Matching Items (8)
134426-Thumbnail Image.png
Description
Genetic manipulation of human cell lines has widespread applications in biomedical research ranging from disease modeling to therapeutic development. Human cells are generally difficult to genetically engineer, but exogenous nucleic acids can be expressed by viral, chemical, or nonchemical means. Chemical transfections are simpler in practice than both viral and

Genetic manipulation of human cell lines has widespread applications in biomedical research ranging from disease modeling to therapeutic development. Human cells are generally difficult to genetically engineer, but exogenous nucleic acids can be expressed by viral, chemical, or nonchemical means. Chemical transfections are simpler in practice than both viral and nonchemical delivery of genetic material, but often suffer from cytotoxicity and low efficiency. Novel aminoglycoside antibiotic-derived lipopolymers have been synthesized to mediate transgene delivery to human cells. These polymers are comprised of either paromomycin or apramycin crosslinked with glycerol diglycidylether and derivatized with stearoyl chloride in varying molar ratios. In this work, three previously identified target lipopolymers were screened against a library of human embryonic and induced pluripotent stem cell lines. Cells were transfected with a plasmid encoding green fluorescent protein (GFP) and expression was quantified with flow cytometry 48 hours after transfection. Transfection efficiency was evaluated between three distinct lipopolymers and four lipopolymer:DNA mass ratios. GFP expression was compared to that of cells transfected with commercially available chemical gene delivery reagent controls\u2014JetPEI, Lipofectamine, and Fugene\u2014at their recommended reagent:DNA ratios. Improved transgene expression in stem cell lines allows for improved research methods. Human stem cell-derived neurons that have been genetically manipulated to express phenotypic characteristics of aging can be utilized to model neurodegenerative diseases, elucidating information about these diseases that would be inaccessible in unmanipulated tissue.
ContributorsMehta, Frea (Author) / Brafman, David (Thesis director) / Rege, Kaushal (Committee member) / Chemical Engineering Program (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134659-Thumbnail Image.png
Description
Gle1 is an mRNP export mediator with major activity localized to the nuclear pore complex in eukaryotic cells. The protein's high preservation across vast phylogenetic distances allows us to approximate research on the properties of yeast Gle1 (yGle1) with those of human Gle1 (hGle1). Research at Vanderbilt University in 2016,

Gle1 is an mRNP export mediator with major activity localized to the nuclear pore complex in eukaryotic cells. The protein's high preservation across vast phylogenetic distances allows us to approximate research on the properties of yeast Gle1 (yGle1) with those of human Gle1 (hGle1). Research at Vanderbilt University in 2016, which provides the research basis of this thesis, suggests that the coiled-coil domain of yGle1 is best crystallized in dicationic aqueous conditions of pH ~8.0 and 10\u201420% PEG 8000. Further exploration of crystallizable microconditions revealed a favorability toward lower pH and lower PEG concentration. Following the discovery of the protein's native crystallography conditions, a comprehensive meta-analysis of scientific literature on Gle1 was conducted on the association of Gle1 mutations with neuron disease.
ContributorsGaetano, Philip Pasquale (Author) / Foy, Joseph (Thesis director) / Dawson, T. Renee (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154575-Thumbnail Image.png
Description
The pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease (AD), remain difficult to ascertain in part because animal models fail to fully recapitulate the complex pathophysiology of these diseases. In vitro models of neurodegenerative diseases generated with patient derived human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells

The pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease (AD), remain difficult to ascertain in part because animal models fail to fully recapitulate the complex pathophysiology of these diseases. In vitro models of neurodegenerative diseases generated with patient derived human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) could provide new insight into disease mechanisms. Although protocols to differentiate hiPSCs and hESCs to neurons have been established, standard practice relies on two dimensional (2D) cell culture systems, which do not accurately mimic the complexity and architecture of the in vivo brain microenvironment.

I have developed protocols to generate 3D cultures of neurons from hiPSCs and hESCs, to provide more accurate models of AD. In the first protocol, hiPSC-derived neural progenitor cells (hNPCs) are plated in a suspension of Matrigel™ prior to terminal differentiation of neurons. In the second protocol, hiPSCs are forced into aggregates called embryoid bodies (EBs) in suspension culture and subsequently directed to the neural lineage through dual SMAD inhibition. Culture conditions are then changed to expand putative hNPC populations and finally differentiated to neuronal spheroids through activation of the tyrosine kinase pathway. The gene expression profiles of the 3D hiPSC-derived neural cultures were compared to fetal brain RNA. Our analysis has revealed that 3D neuronal cultures express high levels of mature pan-neuronal markers (e.g. MAP2, β3T) and neural transmitter subtype specific markers. The 3D neuronal spheroids also showed signs of neural patterning, similar to that observed during embryonic development. These 3D culture systems should provide a platform to probe disease mechanisms of AD and enable to generation of more advanced therapeutics.
ContributorsPetty, Francis (Author) / Brafman, David (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Nikkhah, Mehdi (Committee member) / Arizona State University (Publisher)
Created2016
Description
In medical field today, current diagnostic tools for neurodegenerative diseases fail to diagnose patients prior to the occurrence of damaging neuronal loss. Oftentimes, this means that by the time a patient has been diagnosed with a disease such as Alzheimer's disease (AD) or Parkinson's disease (PD), they have already suffered

In medical field today, current diagnostic tools for neurodegenerative diseases fail to diagnose patients prior to the occurrence of damaging neuronal loss. Oftentimes, this means that by the time a patient has been diagnosed with a disease such as Alzheimer's disease (AD) or Parkinson's disease (PD), they have already suffered severe, irreversible neurodegeneration. One of the significant weaknesses in the diagnosis and treatment of patients with AD and PD is the lack of viable biomarkers. Biomarkers are vital tools that can be utilized to identify patients who are in presymptomatic stages of a disease, track and quantify disease progression, and also determine whether or not a patient is responding to a particular treatment. RNAs are involved in all cellular processes, and due to their very specific spatial, temporal, and even cellular-level expression, abnormal expression signatures serve as key indicators of many diseases. Recently, cells have been shown to secrete nanometer-sized microvesicles, called exosomes, which moderate the horizontal transfer of mRNAs and miRNAs between cells. We hypothesize that exosomes obtained from human biofluids, such as cerebral spinal fluid (CSF) and blood plasma, can be used to determine extracellular RNA (exRNA) expression signatures associated with neurodegenerative disease. This experiment used pooled samples of CSF and plasma in order to investigate which of 3 sample enrichment methods would be most conducive to studying exRNA contained within exosomes. The results from this preliminary investigation will be used in later investigations that will seek to determine exRNA biomarkers of neurodegenerative disease.
ContributorsBeecroft, Taylor Alexandria (Author) / Capco, David (Thesis director) / Van Keuren-Jensen, Kendall (Committee member) / Huentelman, Matt (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
Description

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the deterioration of upper and lower motor neurons in the brain, brain stem, and spinal cord. Multiple missense mutations have been connected to familial ALS, including those in the Matrin-3 protein. Matrin-3 is an RNA and DNA-binding protein encoded

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the deterioration of upper and lower motor neurons in the brain, brain stem, and spinal cord. Multiple missense mutations have been connected to familial ALS, including those in the Matrin-3 protein. Matrin-3 is an RNA and DNA-binding protein encoded by the MATR3 gene. Normally found in the nuclear matrix, Matrin-3 plays several roles vital to RNA metabolism, including splicing, RNA degradation, mRNA transport, mRNA stability, and transcription. Mutations in MATR3 leading to familial ALS include P154S and S85C, but the mechanisms through which these mutations contribute to ALS pathology remain unknown. This makes mouse models particularly useful in elucidating pathology mechanisms, ultimately having the potential to serve as preclinical models for therapeutic drugs. Because of the importance of animal models, we worked to create ALS mouse models for the MATR3 P154S and S85C mutations. We specifically generated two CRISPR/Cas9 mediated knock-in mouse models containing the MATR3 P154S or S85C mutation expressed under the control of the endogenous promoter. Both the homozygous and heterozygous P154S mice developed no physical or motor defects or shortening of lifespan compared to the wildtype mice. They also exhibited no ALS-like pathology in either the muscle or spinal cord up to 24 months. In contrast, the homozygous S85C mice exhibited significant physical and motor differences, including smaller weight, impaired gait, and shortening of lifespan. Some ALS-like pathology was observed in the muscle, but pathology remained limited in the spinal cord of the homozygous mice up to 12 months. In conclusion, our data suggests that the MATR3 P154S mutation alone does not cause ALS in vivo, while the MATR3 S85C mutation induces significant motor deficits, with pathology in the spinal cord potentially beginning at older ages not examined in our study.

ContributorsHouchins, Nicole (Author) / Buetow, Kenneth (Thesis director) / Medina, David (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor)
Created2023-05
131688-Thumbnail Image.png
Description
Over 5.8 million people are currently living with Alzheimer’s disease (AD), with the sixth highest mortality rate in the United States. No known cure or substantially life-extending treatment exists. With the growing aging population these numbers are only expected to increase to about 13.8 million by the year 2050. Alzheimer’s

Over 5.8 million people are currently living with Alzheimer’s disease (AD), with the sixth highest mortality rate in the United States. No known cure or substantially life-extending treatment exists. With the growing aging population these numbers are only expected to increase to about 13.8 million by the year 2050. Alzheimer’s is a multifactorial disease, giving rise to two main types: familial AD (FAD) and sporadic AD (SAD). Although there are different factors associated with each type of the disease, both FAD and SAD result in neuronal and synaptic loss and remain difficult to model in-vitro and treat overall.

Current advances in cellular models of neurodegenerative diseases overcome a variety of limitations possessed in animal and post-mortem human models. Human-induced pluripotent stem cells (hiPSCs) provide a platform with cells that can self-renew and differentiate into mature and functional cell types. HiPSCs are at the forefront of neurodegenerative disease research because of their ability to differentiate into neural cell types. Apolipoprotein E (ApoE) is a protein encoded by the APOE gene found on chromosome 19 of the human genome. There are three common polymorphisms in the APOE gene, resulting from a single amino acid change in the protein. The presence of these polymorphisms are studied as associated risk factors of developing AD. Different combinations of these alleles closely relate to the risk a patient has in developing Alzheimer’s disease. The risk associated effects of this gene are primarily investigated, however the protective effects are not examined to the same extent.

This research aims to overcome the existing limitations in cell differentiations and improve cell population purity that limits the variables present in the culture. To do this, this study optimized a differentiation protocol by separating and purifying neuronal cell populations to study the potential protective effects associated with ApoE, a risk factor seen in SAD. This platform aims to use a purified cell population to effectively analyze cell type specific affects of the ApoE risk factor, specifically in neurons.
ContributorsFrisch, Carlye Arin (Author) / Brafman, David (Thesis director) / Tian, Xiaojun (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
190820-Thumbnail Image.png
Description
Novel means are needed to diagnose neurodegenerative diseases (NDDs) and cancer, given delays in medical diagnosis and rising rates of disease incidence, prevalence, and mortality worldwide. Development of NDDs and cancer has been linked to environmental toxins. Ensuing epigenetic changes may serve as helpful biomarkers to diagnose amyotrophic lateral sclerosis

Novel means are needed to diagnose neurodegenerative diseases (NDDs) and cancer, given delays in medical diagnosis and rising rates of disease incidence, prevalence, and mortality worldwide. Development of NDDs and cancer has been linked to environmental toxins. Ensuing epigenetic changes may serve as helpful biomarkers to diagnose amyotrophic lateral sclerosis (ALS), Parkinson’s Disease (PD), and Alzheimer’s Disease (AD) as well as various cancers sooner and more accurately. This dissertation tabulates and evaluates a spectrum of diagnostic matrixes (i.e., soil, sewage sludge, blood) and markers of disease to inform disease surveillance. A literature search using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Bradford Hill criteria implicated BMAA, formaldehyde, Mn, Hg, and Zn as environmental factors with strong association to ALS risk. Another PRISMA search identified epigenetic changes (e.g., DNA methylation) in NDD patients associated with environmental toxic exposures to air pollutants, heavy metals, and organic chemicals. Of the 180 environmental toxins hypothesized to be associated with AD, PD, or ALS, four heavy metals (As, Cd, Mn, and Hg) were common to these NDDs. Sources, as well as evidence and proxies of human exposure to these heavy metals and Pb were investigated here, namely the metal industries, and metal concentrations in topsoil, sewage sludge, and blood. Concentrations of Cd and Pb in sewage sludge were found to be significantly correlated with NDD prevalence rates in co-located populations (state-level) with odds ratios of 2.91 and 4.08, respectively. Markers of exposure and disease in urine and feces were also evaluated using PRISMA, finding 73 of 94 epigenetic biomarker panels to be valid for tracking primarily gastric and urinary cancers. In all studies, geospatial analyses indicated a preference in study cohorts located in the U.S., Europe, and the northern hemisphere, leaving underserved many populous regions particularly in the southern hemisphere. This dissertation draws attention to sewage sludge as a currently underutilized proxy matrix for assessing toxic human exposures and further identified a spectrum of particularly attractive, non-invasive biomarkers for future diagnostic use to promote early detection, survivability, and quality of life of individuals at risk of NDDs and cancer.
ContributorsNewell, Melanie Engstrom (Author) / Halden, Rolf U. (Thesis advisor) / Mastroeni, Diego (Committee member) / Lee, Heewook (Committee member) / Arizona State University (Publisher)
Created2023
Description
Dementia is a disease affecting many individuals worldwide resulting in neurological deficits. The most common form of dementia known as Alzheimer’s Disease (AD) is the 6th leading cause of death in the United States. The disease is defined by neuron loss, the presence of intracellular tau protein (tubulin associated unit)

Dementia is a disease affecting many individuals worldwide resulting in neurological deficits. The most common form of dementia known as Alzheimer’s Disease (AD) is the 6th leading cause of death in the United States. The disease is defined by neuron loss, the presence of intracellular tau protein (tubulin associated unit) neurofibrillary tangles (NFT), and extracellular amyloid- (Aβ) plaques. For this study, our aim was to understand the staging system used based off of the disease progression, called Braak Staging. Our hypothesis is that as disease progresses, marked by Braak stages, different brain regions will begin to show differential expressions of various biological dysregulations. Molecular dysfunctions of early disease will be precursors to later disease dysfunctions. The outcomes of our study indicated there were several molecular dysfunctions in early disease with tau pathology not present in the region yet.
ContributorsMirji, Ruchira (Author) / Huseby, Carol (Thesis director) / Velazquez, Ramon (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2024-05