Matching Items (2)
Filtering by

Clear all filters

149908-Thumbnail Image.png
Description
Programmable Metallization Cell (PMC) is a technology platform which utilizes mass transport in solid or liquid electrolyte coupled with electrochemical (redox) reactions to form or remove nanoscale metallic electrodeposits on or in the electrolyte. The ability to redistribute metal mass and form metallic nanostructure in or on a structure in

Programmable Metallization Cell (PMC) is a technology platform which utilizes mass transport in solid or liquid electrolyte coupled with electrochemical (redox) reactions to form or remove nanoscale metallic electrodeposits on or in the electrolyte. The ability to redistribute metal mass and form metallic nanostructure in or on a structure in situ, via the application of a bias on laterally placed electrodes, creates a large number of promising applications. A novel PMC-based lateral microwave switch was fabricated and characterized for use in microwave systems. It has demonstrated low insertion loss, high isolation, low voltage operation, low power and low energy consumption, and excellent linearity. Due to its non-volatile nature the switch operates with fewer biases and its simple planar geometry makes possible innovative device structures which can be potentially integrated into microwave power distribution circuits. PMC technology is also used to develop lateral dendritic metal electrodes. A lateral metallic dendritic network can be grown in a solid electrolyte (GeSe) or electrodeposited on SiO2 or Si using a water-mediated method. These dendritic electrodes grown in a solid electrolyte (GeSe) can be used to lower resistances for applications like self-healing interconnects despite its relatively low light transparency; while the dendritic electrodes grown using water-mediated method can be potentially integrated into solar cell applications, like replacing conventional Ag screen-printed top electrodes as they not only reduce resistances but also are highly transparent. This research effort also laid a solid foundation for developing dendritic plasmonic structures. A PMC-based lateral dendritic plasmonic structure is a device that has metallic dendritic networks grown electrochemically on SiO2 with a thin layer of surface metal nanoparticles in liquid electrolyte. These structures increase the distribution of particle sizes by connecting pre-deposited Ag nanoparticles into fractal structures and result in three significant effects, resonance red-shift, resonance broadening and resonance enhancement, on surface plasmon resonance for light trapping simultaneously, which can potentially enhance thin film solar cells' performance at longer wavelengths.
ContributorsRen, Minghan (Author) / Kozicki, Michael (Thesis advisor) / Schroder, Dieter (Committee member) / Roedel, Ronald (Committee member) / Barnaby, Hugh (Committee member) / Arizona State University (Publisher)
Created2011
149553-Thumbnail Image.png
Description
To extend the lifetime of complementary metal-oxide-semiconductors (CMOS), emerging process techniques are being proposed to conquer the manufacturing difficulties. New structures and materials are proposed with superior electrical properties to traditional CMOS, such as strain technology and feedback field-effect transistor (FB-FET). To continue the design success and make an impact

To extend the lifetime of complementary metal-oxide-semiconductors (CMOS), emerging process techniques are being proposed to conquer the manufacturing difficulties. New structures and materials are proposed with superior electrical properties to traditional CMOS, such as strain technology and feedback field-effect transistor (FB-FET). To continue the design success and make an impact on leading products, advanced circuit design exploration must begin concurrently with early silicon development. Therefore, an accurate and scalable model is desired to correctly capture those effects and flexible to extend to alternative process choices. For example, strain technology has been successfully integrated into CMOS fabrication to improve transistor performance but the stress is non-uniformly distributed in the channel, leading to systematic performance variations. In this dissertation, a new layout-dependent stress model is proposed as a function of layout, temperature, and other device parameters. Furthermore, a method of layout decomposition is developed to partition the layout into a set of simple patterns for model extraction. These solutions significantly reduce the complexity in stress modeling and simulation. On the other hand, semiconductor devices with self-feedback mechanisms are emerging as promising alternatives to CMOS. Fe-FET was proposed to improve the switching by integrating a ferroelectric material as gate insulator in a MOSFET structure. Under particular circumstances, ferroelectric capacitance is effectively negative, due to the negative slope of its polarization-electrical field curve. This property makes the ferroelectric layer a voltage amplifier to boost surface potential, achieving fast transition. A new threshold voltage model for Fe-FET is developed, and is further revealed that the impact of random dopant fluctuation (RDF) can be suppressed. Furthermore, through silicon via (TSV), a key technology that enables the 3D integration of chips, is studied. TSV structure is usually a cylindrical metal-oxide-semiconductors (MOS) capacitor. A piecewise capacitance model is proposed for 3D interconnect simulation. Due to the mismatch in coefficients of thermal expansion (CTE) among materials, thermal stress is observed in TSV process and impacts neighboring devices. The stress impact is investigated to support the interaction between silicon process and IC design at the early stage.
ContributorsWang, Chi-Chao (Author) / Cao, Yu (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Clark, Lawrence (Committee member) / Schroder, Dieter (Committee member) / Arizona State University (Publisher)
Created2011