Matching Items (6)
Filtering by

Clear all filters

150588-Thumbnail Image.png
Description
This thesis summarizes the research work carried out on design, modeling and simulation of semiconductor nanophotonic devices. The research includes design of nanowire (NW) lasers, modeling of active plasmonic waveguides, design of plasmonic nano-lasers, and design of all-semiconductor plasmonic systems. For the NW part, a comparative study of electrical injection

This thesis summarizes the research work carried out on design, modeling and simulation of semiconductor nanophotonic devices. The research includes design of nanowire (NW) lasers, modeling of active plasmonic waveguides, design of plasmonic nano-lasers, and design of all-semiconductor plasmonic systems. For the NW part, a comparative study of electrical injection in the longitudinal p-i-n and coaxial p-n core-shell NWs was performed. It is found that high density carriers can be efficiently injected into and confined in the core-shell structure. The required bias voltage and doping concentrations in the core-shell structure are smaller than those in the longitudinal p-i-n structure. A new device structure with core-shell configuration at the p and n contact regions for electrically driven single NW laser was proposed. Through a comprehensive design trade-off between threshold gain and threshold voltage, room temperature lasing has been proved in the laser with low threshold current and large output efficiency. For the plasmonic part, the propagation of surface plasmon polariton (SPP) in a metal-semiconductor-metal structure where semiconductor is highly excited to have an optical gain was investigated. It is shown that near the resonance the SPP mode experiences an unexpected giant modal gain that is 1000 times of the material gain in the semiconductor and the corresponding confinement factor is as high as 105. The physical origin of the giant modal gain is the slowing down of the average energy propagation in the structure. Secondly, SPP modes lasing in a metal-insulator-semiconductor multi-layer structure was investigated. It is shown that the lasing threshold can be reduced by structural optimization. A specific design example was optimized using AlGaAs/GaAs/AlGaAs single quantum well sandwiched between silver layers. This cavity has a physical volume of 1.5×10-4 λ03 which is the smallest nanolaser reported so far. Finally, the all-semiconductor based plasmonics was studied. It is found that InAs is superior to other common semiconductors for plasmonic application in mid-infrared range. A plasmonic system made of InAs, GaSb and AlSb layers, consisting of a plasmonic source, waveguide and detector was proposed. This on-chip integrated system is realizable in a single epitaxial growth process.
ContributorsLi, Debin (Author) / Ning, Cun-Zheng (Thesis advisor) / Zhang, Yong-Hang (Committee member) / Balanis, Constantine A (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
150535-Thumbnail Image.png
Description
Infrared photodetectors, used in applications for sensing and imaging, such as military target recognition, chemical/gas detection, and night vision enhancement, are predominantly comprised of an expensive II-VI material, HgCdTe. III-V type-II superlattices (SLs) have been studied as viable alternatives for HgCdTe due to the SL advantages over HgCdTe: greater control

Infrared photodetectors, used in applications for sensing and imaging, such as military target recognition, chemical/gas detection, and night vision enhancement, are predominantly comprised of an expensive II-VI material, HgCdTe. III-V type-II superlattices (SLs) have been studied as viable alternatives for HgCdTe due to the SL advantages over HgCdTe: greater control of the alloy composition, resulting in more uniform materials and cutoff wavelengths across the wafer; stronger bonds and structural stability; less expensive substrates, i.e., GaSb; mature III-V growth and processing technologies; lower band-to-band tunneling due to larger electron effective masses; and reduced Auger recombination enabling operation at higher temperatures and longer wavelengths. However, the dark current of InAs/Ga1-xInxSb SL detectors is higher than that of HgCdTe detectors and limited by Shockley-Read-Hall (SRH) recombination rather than Auger recombination. This dissertation work focuses on InAs/InAs1-xSbx SLs, another promising alternative for infrared laser and detector applications due to possible lower SRH recombination and the absence of gallium, which simplifies the SL interfaces and growth processes. InAs/InAs1-xSbx SLs strain-balanced to GaSb substrates were designed for the mid- and long-wavelength infrared (MWIR and LWIR) spectral ranges and were grown using MOCVD and MBE by various groups. Detailed characterization using high-resolution x-ray diffraction, atomic force microscopy, photoluminescence (PL), and photoconductance revealed the excellent structural and optical properties of the MBE materials. Two key material parameters were studied in detail: the valence band offset (VBO) and minority carrier lifetime. The VBO between InAs and InAs1-xSbx strained on GaSb with x = 0.28 - 0.41 was best described by Qv = ÄEv/ÄEg = 1.75 ± 0.03. Time-resolved PL experiments on a LWIR SL revealed a lifetime of 412 ns at 77 K, one order of magnitude greater than that of InAs/Ga1-xInxSb LWIR SLs due to less SRH recombination. MWIR SLs also had 100's of ns lifetimes that were dominated by radiative recombination due to shorter periods and larger wave function overlaps. These results allow InAs/InAs1-xSbx SLs to be designed for LWIR photodetectors with minority carrier lifetimes approaching those of HgCdTe, lower dark currents, and higher operating temperatures.
ContributorsSteenbergen, Elizabeth H (Author) / Zhang, Yong-Hang (Thesis advisor) / Brown, Gail J. (Committee member) / Vasileska, Dragica (Committee member) / Johnson, Shane R. (Committee member) / Arizona State University (Publisher)
Created2012
171368-Thumbnail Image.png
Description
Nanophotonics studies the interaction of light with nanoscale devices and nanostructures. This thesis focuses on developing nanoscale devices for optical modulation (saturable absorber and all-optical modulator) and investigating light scattering from nanoparticles for underwater navigation and energy sector application. Saturable absorbers and all-optical modulators are essential to generate ultrashort high-power

Nanophotonics studies the interaction of light with nanoscale devices and nanostructures. This thesis focuses on developing nanoscale devices for optical modulation (saturable absorber and all-optical modulator) and investigating light scattering from nanoparticles for underwater navigation and energy sector application. Saturable absorbers and all-optical modulators are essential to generate ultrashort high-power laser pulses and high-speed communications. Graphene-based devices are broadband, ultrafast, and compatible with different substrates and fibers. Nevertheless, the required fluence to saturate or modulate the optical signal with graphene is still high to realize low-threshold, compact broadband devices, which are essential for many applications. This dissertation emphasizes that the strong light-matter interaction in graphene-plasmonic hybrid metasurface greatly enhances monolayer graphene’s saturable absorption and optical signal modulation effect while maintaining graphene’s ultrafast carrier dynamics. Furthermore, based on this concept, simulation models and experimental demonstrations are presented in this dissertation to demonstrate both subwavelength (~λ/5 in near-infrared and ~λ/10 in mid-infrared) thick graphene-based saturable absorber (with record-low saturation fluence (~0.1μJ/cm2), and ultrashort recovery time (~60fs) at near-infrared wavelengths) and all-optical modulators ( with 40% reflection modulation at 6.5μm with ~55μJ/cm2 pump fluence and ultrafast relaxation time of ~1ps at 1.56μm with less than 8μJ/cm2 pump fluence). Underwater navigation is essential for various underwater vehicles. However, there is no reliable method for underwater navigation. This dissertation presents a numerical simulation model and algorithm for navigation based on underwater polarization mapping data. With the methods developed, for clear water in the swimming pool, it is possible to achieve a sun position error of 0.35˚ azimuth and 0.03˚ zenith angle, and the corresponding location prediction error is ~23Km. For turbid lake water, a location determination error of ~100Km is achieved. Furthermore, maintenance of heliostat mirrors and receiver tubes is essential for properly operating concentrated solar power (CSP) plants. This dissertation demonstrates a fast and field deployable inspection method to measure the heliostat mirror soiling levels and receiver tube defect detection based on polarization images. Under sunny and clear sky conditions, accurate reflection efficiency (error ~1%) measurement for mirrors with different soiling levels is achieved, and detection of receiver tube defects is demonstrated.
ContributorsRafique, Md Zubair Ebne (Author) / Yao, Yu (Thesis advisor) / Palais, Joseph (Committee member) / Zhang, Yong-Hang (Committee member) / Sukharev, Maxim (Committee member) / Arizona State University (Publisher)
Created2022
168405-Thumbnail Image.png
Description
Polarization detection and control techniques play essential roles in various applications, including optical communication, polarization imaging, chemical analysis, target detection, and biomedical diagnosis. Conventional methods for polarization detection and polarization control require bulky optical systems. Flat optics opens a new way for ultra-compact, lower-cost devices and systems for polarization detection

Polarization detection and control techniques play essential roles in various applications, including optical communication, polarization imaging, chemical analysis, target detection, and biomedical diagnosis. Conventional methods for polarization detection and polarization control require bulky optical systems. Flat optics opens a new way for ultra-compact, lower-cost devices and systems for polarization detection and control. However, polarization measurement and manipulating devices with high efficiency and accuracy in the mid-infrared (MIR) range remain elusive. This dissertation presented design concepts and experimental demonstrations of full-Stokes parameters detection and polarization generation devices based on chip-integrated plasmonic metasurfaces with high performance and record efficiency. One of the significant challenges for full-Stokes polarization detection is to achieve high-performance circular polarization (CP) filters. The first design presented in this dissertation is based on the direct integration of plasmonic quarter-wave plate (QWP) onto gold nanowire gratings. It is featured with the subwavelength thickness (~500nm) and extinction ratio around 16. The second design is based on the anisotropic thin-film interference between two vertically integrated anisotropic plasmonic metasurfaces. It provides record high efficiency (around 90%) and extinction ratio (>180). These plasmonic CP filters can be used for circular, elliptical, and linear polarization generation at different wavelengths. The maximum degree of circular polarization (DOCP) measured from the sample achieves 0.99998. The proposed CP filters were integrated with nanograting-based linear polarization (LP) filters on the same chip for single-shot polarization detection. Full-Stokes measurements were experimentally demonstrated with high accuracy at the single wavelength using the direct subtraction method and over a broad wavelength range from 3.5 to 4.5mm using the Mueller matrix method. This design concept was later expanded to a pixelized array of polarization filters. A full-Stokes imaging system was experimentally demonstrated based on integrating a metasurface with pixelized polarization filters arrays and an MIR camera.
ContributorsBai, Jing (Author) / Yao, Yu (Thesis advisor) / Balanis, Constantine A. (Committee member) / Wang, Liping (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2021
156549-Thumbnail Image.png
Description
Ge1-xSnx and SiyGe1-x-ySnx materials are being researched intensively for applications in infra-red optoelectronic devices. Due to their direct band gap these materials may in-fact be the enabling factor in the commercial realization of silicon photonics/group IV photonics and the integration of nanophotonics with nanoelectronics. However the synthesis of these meta-stable

Ge1-xSnx and SiyGe1-x-ySnx materials are being researched intensively for applications in infra-red optoelectronic devices. Due to their direct band gap these materials may in-fact be the enabling factor in the commercial realization of silicon photonics/group IV photonics and the integration of nanophotonics with nanoelectronics. However the synthesis of these meta-stable semiconductor alloys, with a range of Sn-compositions, remains the primary technical challenge. Highly specialized epitaxial growth methods must be employed to produce single crystal layers which have sufficient quality for optoelectronic device applications. Up to this point these methods have been unfavorable from a semiconductor manufacturing perspective. In this work the growth of high-quality Si-Ge-Sn epitaxial alloys on Ge-buffered Si (100) using an industry-standard reduced pressure chemical vapor deposition reactor and a cost-effective chemistry is demonstrated. The growth kinetics are studied in detail in-order to understand the factors influencing layer composition, morphology, and defectivity. In doing so breakthrough GeSn materials and device results are achieved including methods to overcome the limits of Sn-incorporation and the realization of low-defect and strain-relaxed epitaxial layers with up to 20% Sn.

P and n-type doping methods are presented in addition to the production of SiGeSn ternary alloys. Finally optically stimulated lasing in thick GeSn layers and SiGeSn/GeSn multiple quantum wells is demonstrated. Lasing wavelengths ranging from 2-3 µm at temperatures up to 180K are realized in thick layers. Whereas SiGeSn/GeSn multiple quantum wells on a strain-relaxed GeSn buffers have enabled the first reported SiGeSn/GeSn multiple quantum well laser operating up to 80K with threshold power densities as low as 33 kW/cm2.
ContributorsMargetis, Joseph (Author) / Zhang, Yong-Hang (Thesis advisor) / Chizmeshya, Andrew (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2018
158802-Thumbnail Image.png
Description
The first part of this dissertation reports the study of the vertical carrier transport and device application in InAs/InAs1-xSbx strain-balanced type-II superlattice. It is known that the low hole mobility in the InAs/InAs1-xSbx superlattice is considered as the main reason for the low internal quantum efficiency of its mid-wave and

The first part of this dissertation reports the study of the vertical carrier transport and device application in InAs/InAs1-xSbx strain-balanced type-II superlattice. It is known that the low hole mobility in the InAs/InAs1-xSbx superlattice is considered as the main reason for the low internal quantum efficiency of its mid-wave and long-wave infrared photodetectors, compared with that of its HgCdTe counterparts. Optical measurements using time-resolved photoluminescence and steady-state photoluminescence spectroscopy are implemented to extract the diffusion coefficients and mobilities of holes in the superlattices at various temperatures from 12 K to 210 K. The sample structure consists of a mid-wave infrared superlattice absorber region grown atop a long-wave infrared superlattice probe region. An ambipolar diffusion model is adopted to extract the hole mobility. The results show that the hole mobility first increases from 0.2 cm2/Vs at 12 K and then levels off at ~50 cm2/Vs as the temperature exceeds ~60 K. An InAs/InAs1-xSbx type-II superlattice nBn long-wavelength barrier infrared photodetector has also been demonstrated with a measured dark current density of 9.5×10-4 A/cm2 and a maximum resistance-area product of 563 Ω-cm2 at 77 K under a bias of -0.5 V. The Arrhenius plot of the dark current density reveals a possible high-operating-temperature of 110 K.The second part of the dissertation reports a lift-off technology using a water-soluble sacrificial MgTe layer grown on InSb. This technique enables the seamless integration of materials with lattice constants near 6.5 Å, such as InSb, CdTe, PbTe, HgTe and Sn. Coherently strained MgTe with a lattice constant close to 6.5 Å acts as a sacrificial layer which reacts with water and releases the film above it. Freestanding CdTe/MgxCd1-xTe double-heterostructures resulting from the lift-off process show increased photoluminescence intensity due to enhanced extraction efficiency and photon-recycling effect. The lifted-off thin films show smooth and flat surfaces with 6.7 Å root-mean-square roughness revealed by atomic-force microscopy profiles. The increased photoluminescence intensity also confirms that the CdTe/MgxCd1-xTe double-heterostructures maintain the high optical quality after epitaxial lift-off.
ContributorsTsai, Cheng-Ying (Author) / Zhang, Yong-Hang YZ (Thesis advisor) / Vasileska, Dragica DV (Committee member) / Johnson, Shane SJ (Committee member) / Zhao, Yuji YZ (Committee member) / Arizona State University (Publisher)
Created2020