Matching Items (73)
134014-Thumbnail Image.png
Description
This project examined the need for Science, Technology, Engineering, and Math (STEM) activities within a specific modality (centers) and their potential influence on elementary students with a particular emphasis on gender. STEM is an interdisciplinary curriculum that seeks to seamlessly incorporate science, technology, engineering, and math. Due to the increasing

This project examined the need for Science, Technology, Engineering, and Math (STEM) activities within a specific modality (centers) and their potential influence on elementary students with a particular emphasis on gender. STEM is an interdisciplinary curriculum that seeks to seamlessly incorporate science, technology, engineering, and math. Due to the increasing demand for STEM professions and proficiency within each aspect, the education system and individual educators require lessons and modalities that motivate learning in each of these areas. Administrators and teachers need creative ways to provide effective STEM implementation. Currently, the education system as a whole lacks creative and motivating material for these four domains. Not only this, but there has been a misunderstanding in regard to what effective STEM implementation entails, as well as a dearth of classroom ready lessons for educators. As a result, this thesis project developed a way to implement STEM through the use of learning centers. Learning centers are defined as designated areas within a classroom that allow easy access to a variety of learning materials. Within these centers are activities that reinforce concepts by using inquiry-based learning. Learning centers are effective in developing additional concepts or providing students with a greater breadth of knowledge on a concept. This thesis project developed three STEM learning center activity boxes and two STEM learning center outlines. Creating effective STEM learning centers and outlines was a multistep process. The first step was to develop a 3E lesson plan for each activity. Once the lesson plans were revised and complete, the creation of the three activity boxes was next. To create the activity boxes, all the required materials and worksheets were gathered and printed. From there, the next step was to implement the learning centers in a classroom to observe the results and propose any modifications. Afterwards, a reflection detailing the results and modifications was made. In the end, the goal of this project was to develop easily implemented STEM activities for my future classroom. Coming up with a creative way to get kids curious and excited about STEM is key in building STEM awareness. Not only did my project create STEM activities I can implement, but it also allowed me the opportunity to share my activities with other teachers. As a result, influencing the spread of STEM amongst future and current teachers.
ContributorsSchott, Nicole Elizabeth (Author) / Walters, Molina (Thesis director) / Oliver, Jill (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
STEM has increasingly become a buzz word in the world of education. According to Briener, et. al. (2012), the most common perspective of STEM education is teaching the integrated disciplines of science, technology, engineering, and mathematics as "one cohesive entity" instead of as separate subjects (p. 5). Prioritizing a STEM

STEM has increasingly become a buzz word in the world of education. According to Briener, et. al. (2012), the most common perspective of STEM education is teaching the integrated disciplines of science, technology, engineering, and mathematics as "one cohesive entity" instead of as separate subjects (p. 5). Prioritizing a STEM focus is a tactic many schools are beginning to adapt and one the United States government is financially backing, contributing significantly to the popularity of the movement (Briener, et.al., 2012). Across the nation, schools are making strides towards incorporating more STEM activities, and many school districts are designating entire schools as STEM schools. These STEM schools distinguish themselves with consistent commitment and attention to aspects of the STEM fields within instruction, including research opportunities for students, 21st Century skills, and a variety of learning environments. Bridges Elementary is one such identified STEM school that exemplifies these criteria, amongst others, setting a precedent for STEM schools to come.
ContributorsFefolt, Molly Lynn (Author) / Walters, Molina (Thesis director) / Oliver, Jill (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134070-Thumbnail Image.png
Description
This research was intended to investigate the effects of various motivational variables on high school students' declaration of a STEM major in college, focusing on PSEM majors. It made use of data from the High School Longitudinal Study of 2009, including the first and second follow-up years (2011 and 2013).

This research was intended to investigate the effects of various motivational variables on high school students' declaration of a STEM major in college, focusing on PSEM majors. It made use of data from the High School Longitudinal Study of 2009, including the first and second follow-up years (2011 and 2013). The advantage of this study over others is due to this data set, which was designed to be a representative sample of the national population of US high school students. Effects of motivational factors were considered in the context of demographic groups, with the analysis conducted on PSEM declaration illuminating a problem in the discrepancy between male and female high school students. In general, however, PSEM retention from intention to declaration is abysmal, with only 35% of those students who intended towards PSEM actually enrolling.
ContributorsMangu, Daniel Matei (Author) / Middleton, James (Thesis director) / Ganesh, Tirupalavanam (Committee member) / School of International Letters and Cultures (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
133787-Thumbnail Image.png
Description
This paper about the Garden Grub concerns the growing Agritech industry along with exposing middle school students to STEM education. Currently over half of America's students are not prepared to be successful in our technology driven world. These students did not have the opportunity to be exposed to many Science,

This paper about the Garden Grub concerns the growing Agritech industry along with exposing middle school students to STEM education. Currently over half of America's students are not prepared to be successful in our technology driven world. These students did not have the opportunity to be exposed to many Science, Technology, Engineering, and Math related careers or majors before entering the working world and/or college. These students are unaware of the real-life applications these topics can have and will never have the chance to pursue these fields. Using the Garden Grub, students will be introduced to the world of Agritech and how traditional agriculture is changing in include more technology. The Garden Grub is designed to not only introduce students to STEM in general, but specifically the Agritech Industry. With the Garden Grub kit and instructions students will be able to construct a small device that will monitor the external temperature and the soil moisture of a plant they are growing. For future implementations of the Garden Grub, we will develop a structured lesson plan to teach the users more about the device they are building. This is so in the future users could continue their education in Agritech and STEM because they have more knowledge on the subjects From standalone testing the Garden Grub, the device was able to successfully monitor the lettuce to ensure that it grew successfully. The Garden Grub instructions and kit were tested in a fourth-grade classroom, where college volunteers worked with the students to begin to create their own device. While there was not enough time to successfully complete the product the fourth graders were more interested in STEM than when we first started. Even though they struggled in the beginning, students quickly learned basic concepts , such as +/- circuit power, transfer of data, and sensor connections. More recently we were able to go into a middle school and teach in a classroom with the students who were part of a coding elective course. Since our last outing we were able to update the user manual and prepare more ahead of time. This gave us more time to explain the concepts to the students, along with being able to successful build all of the devices. They began to think of ways that this device could be applicable to their lives along with how the Garden Grub could be improved in the future.
ContributorsWynia, Rachel Marie (Author) / Lin, Elva (Thesis director) / Eakin, Hallie (Committee member) / WPC Graduate Programs (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134781-Thumbnail Image.png
Description
In recent education trends, an emphasis has been placed on teaching students in STEM (Science, Technology, Engineering, and Mathematics) disciplines. Many researchers have advocated for integrating Arts education as well, changing STEM education to STEAM (STEM + Arts) education. This paper describes an original 8th Grade physics curriculum integrating Science,

In recent education trends, an emphasis has been placed on teaching students in STEM (Science, Technology, Engineering, and Mathematics) disciplines. Many researchers have advocated for integrating Arts education as well, changing STEM education to STEAM (STEM + Arts) education. This paper describes an original 8th Grade physics curriculum integrating Science, Technology, Engineering, Arts, and Mathematics (STEAM). The curriculum was designed to teach core science concepts through inquiry and dance activities. The curriculum uses the 5E inquiry format, specifically using dance and movement activities to elaborate on the learned science content. The unit curriculum is designed to be implemented in an 8th Grade science classroom based on best practices in Science Instruction and Dance Education. The curriculum was not implemented as a research study this year, but is designed to support research in the future. The curriculum was however presented to Term 6 Pre-service Teachers in Mary Lou Fulton Teacher's College at ASU, whom evaluated the effectiveness of the lessons and offered feedback. This paper includes a review of current literature on STEAM education and dance integration, rationale for the curriculum's 5E Format and dance integration, the entire physics unit curriculum in 5E format, Pre-service Teacher feedback, and implications for a future research study with the unit curriculum.
ContributorsHarris, Carson Donald (Author) / Chen, Ying-Chih (Thesis director) / Atkinson, Laura (Committee member) / Division of Teacher Preparation (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
Clean and accessible drinking water is a crucial and limited resource. As the world's population grows and demand increases, water resources will become more limited. This project aims to educate students on water resources, drinking water, and how biomimicry can allow society to improve its water usage. The project consists

Clean and accessible drinking water is a crucial and limited resource. As the world's population grows and demand increases, water resources will become more limited. This project aims to educate students on water resources, drinking water, and how biomimicry can allow society to improve its water usage. The project consists of a ten day unit plan which addresses several water topics such as: the various uses of water, water distribution, where drinking water comes from, the water treatment process, and more. After establishing background knowledge on water and surrounding issues, the students will be challenged to design a water bottle using biomimicry. Biomimicry is looking at nature to draw and inspire solutions to human problems. This unit has been optimized for use by elementary teachers. The ten day unit consists of a lesson summary, objectives, standards, and recommended activities for each day. Of the ten days, three lesson plans were fully developed using the 5E format. The research supporting this project is compiled in the following report.
ContributorsSalik, Rachael (Co-author) / Burke, Aurora (Co-author) / Walters, Molina (Thesis director) / Larson, Kelli L. (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134873-Thumbnail Image.png
Description
As a Country, the United States is continually falling behind academically when compared to other Nations. Therefore, the purpose of my Honors Thesis is to enlighten others on the importance of incorporating science, technology, engineering, and mathematics (STEM) into our classrooms. When students have the chance to partake in hands

As a Country, the United States is continually falling behind academically when compared to other Nations. Therefore, the purpose of my Honors Thesis is to enlighten others on the importance of incorporating science, technology, engineering, and mathematics (STEM) into our classrooms. When students have the chance to partake in hands on, inquiry based lessons, their new knowledge for the subject increases drastically. However, completing STEM lessons in the classroom is a challenging task. For this reason, I have designed a unit's worth of lesson plans, where the unit encompasses science, technology, engineering, and mathematics. These STEM lessons are inquiry-based so that students get an understanding that science is a learning process, not just a group of facts to be memorized. The lessons are written in the 5E format, as this format is based on the way human beings learn. I wanted to make this as easy as possible for teachers to bring inquiry-based STEM learning into the classroom. When students are allowed to take control of their own learning and make discoveries for themselves, they are going to realize the excitement that comes with STEM. This will lead more students to pursue STEM careers, thus helping bring the United States back to a competitive level academically.
ContributorsPiatak, Mary Frances (Author) / Oliver, Jill (Thesis director) / Walters, Molina (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
153640-Thumbnail Image.png
Description
The purpose of this instructional design and development study was to describe, evaluate and improve the instructional design process and the work of interdisciplinary design teams. A National Science Foundation (NSF) funded, Transforming Undergraduate Education in Science (TUES) project was the foundation for this study. The project developed new curriculum

The purpose of this instructional design and development study was to describe, evaluate and improve the instructional design process and the work of interdisciplinary design teams. A National Science Foundation (NSF) funded, Transforming Undergraduate Education in Science (TUES) project was the foundation for this study. The project developed new curriculum materials to teach learning content in unsaturated soils in undergraduate geotechnical engineering classes, a subset of the civil engineering. The study describes the instructional design (ID) processes employed by the team members as they assess the need, develop the materials, disseminate the learning unit, and evaluate its effectiveness, along with the impact the instructional design process played in the success of the learning materials with regard to student achievement and faculty and student attitudes. Learning data were collected from undergraduate geotechnical engineering classes from eight partner universities across the country and Puerto Rico over three phases of implementation. Data were collected from students and faculty that included pretest/posttest scores and attitudinal survey questions. The findings indicated a significant growth in the learning with the students of the faculty who were provided all learning materials. The findings also indicated an overall faculty and student satisfaction with the instructional materials. Observational and anecdotal data were also collected in the form of team meeting notes, personal observations, interviews and design logs. Findings of these data indicated a preference with working on an interdisciplinary instructional design team. All these data assisted in the analysis of the ID process, providing a basis for descriptive and inferential data used to provide suggestions for improving the ID process and the work of interdisciplinary instructional design teams.
ContributorsOrnelas, Arthur (Author) / Savenye, Wilhelmina C. (Thesis advisor) / Atkinson, Robert (Committee member) / Bitter, Gary (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2015
155373-Thumbnail Image.png
Description
Under-representation of women doctors in medical work force despite their overwhelming majority in medical schools is an intriguing social issue for Pakistan raising important questions related to evolving gender relations in Pakistani society. Previous research on the broader issue of under-representation of women in science has focused primarily on the

Under-representation of women doctors in medical work force despite their overwhelming majority in medical schools is an intriguing social issue for Pakistan raising important questions related to evolving gender relations in Pakistani society. Previous research on the broader issue of under-representation of women in science has focused primarily on the structural barriers to women’s advancement. It does not account for the underlying subtle (and changing) gendered power relations that permeate everyday life and which can constrain (or enable) the choices of women. It also does not address how women are not simply constructed as subjects within intersecting power relations, but actively construct meaning in relation to them. It raises interesting questions about the cultural shaping of subjectivities, identities and agency of women within the web of power relations in a society such as Pakistan.

To analyze the underlying dynamics of this issue, this dissertation empirically examines the individual, institutional and social factors which enable or affect the career choices of Pakistani women doctors. Based on the ethnographic data obtained from in-depth, person centered, open ended interviews with sixty women doctors and their families, as well as policy makers and the stake holders in medical education and health administration in Lahore, Pakistan this dissertation seeks to address the complex issues of empowerment and agency in the context of Pakistani women, both in individual and collective sense.

Participation in medical education is ostensibly an empowering act, but dissecting the social relations in which this decision takes place reveals that becoming a doctor actually enmeshes women further in the disciplinary relations within their families and society. Similarly, the medical workplaces of Pakistan are marked by entrenched gendered hierarchies constraining women’s access to resources and their progression through medical career. Finally, the political implications of defining work in medicine, and devaluing care in capitalist economies is explored.
ContributorsMasood, Ayesha (Author) / Tsuda, Takeyuki (Thesis advisor) / Wutich, Amber (Committee member) / Gaughan, Monica (Committee member) / Arizona State University (Publisher)
Created2017
Description
During the transition between high school and college, there is an enormous decline in the number of women who pursue STEM (Science, Technology, Engineering, and Mathematics). Even in the STEM workforce, the gender gap is quite large. This results in a lot of wasted potential and talent that is needed

During the transition between high school and college, there is an enormous decline in the number of women who pursue STEM (Science, Technology, Engineering, and Mathematics). Even in the STEM workforce, the gender gap is quite large. This results in a lot of wasted potential and talent that is needed to stay competitive in today's world. This thesis is divided into three parts: identifying a problem, analyzing possible causes, and highlighting various solutions. By using resources such as the Collegeboard, it is apparent that high schools girls over represent in AP and honors math and science classes and achieve just as much as their male counterparts. Due to various causes such as stereotyping, implicit bias, lesser developed spatial skills, lack of confidence, lack of female role models, and uncomfortable work environments, girls are deterred from pursuing STEM majors in college. Of those that do declare a major in STEM, many switch to a non-STEM major by the end of their first year. Even in the workforce, a majority of women in STEM leave midway through their career (after about 10 years). Although there are critics who claim that women do not have the biological ability to succeed in STEM, evidence proves otherwise. The underrepresentation of women in STEM fields has become such a known issue that there have been many recent programs and organizations put in place to encourage young women to pursue STEM. By evaluating the success of these programs and using them as a models, we can reduce the gender gap in STEM fields in the future.
ContributorsNahon, Leah H. (Author) / Duerden, Sarah (Thesis director) / Brewer, Kathleen (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05