Matching Items (44)
Filtering by

Clear all filters

150699-Thumbnail Image.png
Description
Historically, African American students have been underrepresented in the fields of science, technology, engineering and mathematics (STEM). If African American students continue to be underrepresented in STEM fields, they will not have access to valuable and high-paying sectors of the economy. Despite the number of African Americans in these fields

Historically, African American students have been underrepresented in the fields of science, technology, engineering and mathematics (STEM). If African American students continue to be underrepresented in STEM fields, they will not have access to valuable and high-paying sectors of the economy. Despite the number of African Americans in these fields being disproportionately low, there are still individuals that persist and complete science degrees. The aim of this study was to investigate African American students who excel in science at Arizona State University and examine the barriers and affordances that they encounter on their journey toward graduation. Qualitative research methods were used to address the research question of the study. My methodology included creating a case study to investigate the experiences of eight African American undergraduate college students at Arizona State University. These four male and four female students were excelling sophomores, juniors, or seniors who were majoring in a science field. Two of the males came from lower socioeconomic status (SES) backgrounds, while two of the males were from higher SES backgrounds. The same applied to the four female participants. My research utilized surveys, semistructured interviews, and student observations to collect data that was analyzed and coded to determine common themes and elements that exist between the students. As a result of the data collection opportunities, peer support and financial support were identified as barriers, while, parental support, financial support, peer support, and teacher support were identified as affordances. In analyzing the data, the results indicated that for the student subjects in this study, sex and SES did not have any relationship with the barriers and affordances experienced.
ContributorsBoyce, Quintin (Author) / Scott, Kimberly (Thesis advisor) / Falls, Deanne (Committee member) / Baker, Dale (Committee member) / Arizona State University (Publisher)
Created2012
148409-Thumbnail Image.png
Description

Women’s roles in society have changed significantly throughout the years. The movement to support the rights of women has been ongoing throughout the evolution of society but has been especially prevalent in the last century. The 1960s are when women began to enter the workforce instead of being limited to

Women’s roles in society have changed significantly throughout the years. The movement to support the rights of women has been ongoing throughout the evolution of society but has been especially prevalent in the last century. The 1960s are when women began to enter the workforce instead of being limited to presuming roles as homemakers. Since that point in time, women have continued to thrive in the workforce and have pursued a larger variety of positions in various fields. Even though the opportunities for women continue to grow, there still seems to be an underrepresentation of women in science, technology, engineering, and mathematics (STEM) related fields. The underrepresentation of women pursuing physician and entrepreneurship roles in STEM will be analyzed and the challenges this group of people specifically encounter will be examined. Our first proposal to encourage women to enter STEM focuses on middle-school initiatives and incubator programs. The second proposal, based on commonalities females face within the workforce, is finding a better work/home life balance with the development of new maternity/paternity leave policies. Through these initiatives, we believe that the gender gap in STEM can be bridged.

ContributorsWillbrandt, Mary Madison (Co-author) / Torres, Julianna (Co-author) / Martin, Thomas (Thesis director) / Fette, Donald (Committee member) / Tech Entrepreneurship & Mgmt (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148410-Thumbnail Image.png
Description

Women’s roles in society have changed significantly throughout the years. The movement to support the rights of women has been ongoing throughout the evolution of society but has been especially prevalent in the last century. The 1960s are when women began to enter the workforce instead of being limited to

Women’s roles in society have changed significantly throughout the years. The movement to support the rights of women has been ongoing throughout the evolution of society but has been especially prevalent in the last century. The 1960s are when women began to enter the workforce instead of being limited to presuming roles as homemakers. Since that point in time, women have continued to thrive in the workforce and have pursued a larger variety of positions in various fields. Even though the opportunities for women continue to grow, there still seems to be an underrepresentation of women in science, technology, engineering, and mathematics (STEM) related fields. The underrepresentation of women pursuing physician and entrepreneurship roles in STEM will be analyzed and the challenges this group of people specifically encounter will be examined. Our first proposal to encourage women to enter STEM focuses on middle-school initiatives and incubator programs. The second proposal, based on commonalities females face within the workforce, is finding a better work/home life balance with the development of new maternity/paternity leave policies. Through these initiatives, we believe that the gender gap in STEM can be bridged.

ContributorsTorres, Julianna M (Co-author) / Willbrandt, Maddie (Co-author) / Martin, Thomas (Thesis director) / Fette, Donald (Committee member) / School of Social Transformation (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148145-Thumbnail Image.png
Description

Communication skills are vital for the world we inhabit. Both oral and written communication are some of the most sought-after skills in the job market today; this holds true in science, technology, engineering and mathematics (STEM) fields. Despite the high demand for communication skills, communication classes are not required for

Communication skills are vital for the world we inhabit. Both oral and written communication are some of the most sought-after skills in the job market today; this holds true in science, technology, engineering and mathematics (STEM) fields. Despite the high demand for communication skills, communication classes are not required for some STEM majors (Missingham, 2006). STEM major maps are often so packed with core classes that they nearly exclude the possibility of taking communication courses. Students and job seekers are told they need to be able to communicate to succeed but are not given any information or support in developing their skills. Scientific inquiry and discovery cannot be limited to only those that understand high-level jargon and have a Ph.D. in a subject. STEM majors and graduates must be able to translate information to communities beyond other experts. If they cannot communicate the impact of their research and discoveries, who is going to listen to them?<br/>Overall, the literature around communication in STEM fields demonstrate the need for and value of specific, teachable communication skills. This paper will examine the impact of a communication training module that teaches specific communication skills to BIO 182: General Biology II students. The communication training module is an online module that teaches students the basics of oral communication. The impact of the module will be examined through the observation of students’ presentations.

ContributorsLivingston, Elisabeth Shaw (Author) / Wentzel, Bonnie (Thesis director) / Sellner, Erin (Committee member) / School of Social and Behavioral Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136109-Thumbnail Image.png
Description
Students across the United States lack the necessary skills to be successful college students in Science, Technology and Math (STEM) majors and as a result post-secondary institutions are developing summer bridge programs to aid in their transition. As they develop these programs, effective theory and approach are critical to developing

Students across the United States lack the necessary skills to be successful college students in Science, Technology and Math (STEM) majors and as a result post-secondary institutions are developing summer bridge programs to aid in their transition. As they develop these programs, effective theory and approach are critical to developing successful programs. Though there are a multitude of theories on successful student development, a focus on self-efficacy is critical. Summer Bridge programs across the country as well as the Bio Bridge summer program at Arizona State University were studied alone and through the lens of Cognitive Self-Efficacy Theory as mentioned in Albert Bandura's "Perceived Self-Efficacy in Cognitive Development and Functioning." Cognitive Self-Efficacy Theory provides a framework for self-efficacy development in academic settings. An analysis of fifteen bridge programs found that a large majority focused on developing academic capabilities and often overlooked development of community and social efficacy. An even larger number failed to focus on personal psychology in managing self-debilitating thought patterns based on published goals. Further, Arizona State University's Bio Bridge program could not be considered successful at developing cognitive self-efficacy or increasing retention as data was inconclusive. However, Bio Bridge was tremendously successful at developing social efficacy and community among participants and faculty. Further research and better evaluative techniques need to be developed to understand the program's effectiveness in cognitive self-efficacy development and retention.
ContributorsTummala, Sailesh Vardhan (Author) / Orchinik, Miles (Thesis director) / Brownell, Sara (Committee member) / Shortlidge, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
Description
During the transition between high school and college, there is an enormous decline in the number of women who pursue STEM (Science, Technology, Engineering, and Mathematics). Even in the STEM workforce, the gender gap is quite large. This results in a lot of wasted potential and talent that is needed

During the transition between high school and college, there is an enormous decline in the number of women who pursue STEM (Science, Technology, Engineering, and Mathematics). Even in the STEM workforce, the gender gap is quite large. This results in a lot of wasted potential and talent that is needed to stay competitive in today's world. This thesis is divided into three parts: identifying a problem, analyzing possible causes, and highlighting various solutions. By using resources such as the Collegeboard, it is apparent that high schools girls over represent in AP and honors math and science classes and achieve just as much as their male counterparts. Due to various causes such as stereotyping, implicit bias, lesser developed spatial skills, lack of confidence, lack of female role models, and uncomfortable work environments, girls are deterred from pursuing STEM majors in college. Of those that do declare a major in STEM, many switch to a non-STEM major by the end of their first year. Even in the workforce, a majority of women in STEM leave midway through their career (after about 10 years). Although there are critics who claim that women do not have the biological ability to succeed in STEM, evidence proves otherwise. The underrepresentation of women in STEM fields has become such a known issue that there have been many recent programs and organizations put in place to encourage young women to pursue STEM. By evaluating the success of these programs and using them as a models, we can reduce the gender gap in STEM fields in the future.
ContributorsNahon, Leah H. (Author) / Duerden, Sarah (Thesis director) / Brewer, Kathleen (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136249-Thumbnail Image.png
Description
Various reports produced by the National Research Council suggest that K-12 curricula expand Science, Technology, Engineering, and Mathematics to better help students develop their ability to reason and employ scientific habits rather than simply building scientific knowledge. Every spring, the Arizona Department of Education (ADE) in conjunction with Arizona State

Various reports produced by the National Research Council suggest that K-12 curricula expand Science, Technology, Engineering, and Mathematics to better help students develop their ability to reason and employ scientific habits rather than simply building scientific knowledge. Every spring, the Arizona Department of Education (ADE) in conjunction with Arizona State University holds a professional development workshop titled "Engineering Practices in the Secondary Science Classroom: Engineering Training for Grade 6-12 Math and Science School Teams". This workshop provides math and science teachers with the opportunity to either sustain existing engineering proficiency or be exposed to engineering design practices for the first time. To build teachers' proficiency with employing engineering design practices, they follow a two-day curriculum designed for application in both science and math classrooms as a conjoined effort. As of spring 2015, very little feedback has been received concerning the effectiveness of the ASU-ADE workshops. New feedback methods have been developed for future deployment as past and more informal immediate feedback from teachers and students was used to create preliminary changes in the workshop curriculum. In addition, basic laboratory testing has been performed to further link together engineering problem solving with experiments and computer modelling. In improving feedback and expanding available material, the curriculum was analyzed and improved to more effectively train teachers in engineering practices and implement these practices in their classrooms.
ContributorsSchmidt, Nathan William (Author) / Rajan, Subramaniam (Thesis director) / Neithalath, Narayanan (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
131553-Thumbnail Image.png
Description

Accessible STEAM (Science, Technology, Engineering, Art, and Mathematics) education is imperative in creating the future innovators of the world. This business proposal is for a K-8 STEAM Museum to be built in the Novus Innovation Corridor on Arizona State University (ASU)’s Tempe campus. The museum will host dynamic spaces that

Accessible STEAM (Science, Technology, Engineering, Art, and Mathematics) education is imperative in creating the future innovators of the world. This business proposal is for a K-8 STEAM Museum to be built in the Novus Innovation Corridor on Arizona State University (ASU)’s Tempe campus. The museum will host dynamic spaces that are constantly growing and evolving as exhibits are built by interdisciplinary capstone student groups- creating an internal capstone project pipeline. The intention of the museum is to create an interactive environment that fosters curiosity and creativity while acting as supplemental learning material to Arizona K-8 curriculum. The space intends to serve the greater Phoenix area community and will cater to underrepresented audiences through the development of accessible education rooted in equality and inclusivity.

ContributorsPeters, Abigail J (Author) / McCarville, Daniel R. (Thesis director) / Juarez, Joseph (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132904-Thumbnail Image.png
Description
This thesis is explaining the background, methods, discussions, and future work of developing a low-budget, variable-length, Arduino-based robotics unit for a 5th-7th grade classroom. The main motivation for the Thesis came from self-motivation and a lack of K-12th grade teachers’ teaching robotics. The end goal of the Thesis

This thesis is explaining the background, methods, discussions, and future work of developing a low-budget, variable-length, Arduino-based robotics unit for a 5th-7th grade classroom. The main motivation for the Thesis came from self-motivation and a lack of K-12th grade teachers’ teaching robotics. The end goal of the Thesis would be to teach primary school teachers how to teach robotics in the hopes that it would be taught in their classrooms. There have been many similar robotics or Arduino-based curricula that do not fit the preferred requirement for this thesis but do provide some level of guidance for future development. The method of the Thesis came in four main phases: 1) setup, 2) pre-unit phase, 3) unit phase, and 4) post unit phase. The setup focused primarily on making a timeline and researching what had already been done. The pre-unit phase focused primarily on the development of a new lesson plan along with a new robot design. The unit phase was primarily focused around how the teacher was assisted from a distance. Lastly, the post unit phase was when feedback was received from the teacher and the robots were inventoried to determine if, and what, damage occurred. There are many ways in which the lesson plan and robot design can be improved. Those improvements are the basis for a potential follow-up master’s thesis following the provided timeline.
ContributorsLerner, Jonah Benjamin (Author) / Carberry, Adam (Thesis director) / Walters, Molina (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132913-Thumbnail Image.png
Description
The goal of this study was to understand elementary school children’s perceptions of engineering. A total of 949 elementary school students were surveyed, individually or as a whole group, to examine gender and age differences in achievement-related beliefs (i.e., competency, interest, and importance) pertaining to engineering-related skills and activities. The

The goal of this study was to understand elementary school children’s perceptions of engineering. A total of 949 elementary school students were surveyed, individually or as a whole group, to examine gender and age differences in achievement-related beliefs (i.e., competency, interest, and importance) pertaining to engineering-related skills and activities. The results of this study found that specific skills and activities showed significant gender and age differences for each of the three measures. Significant findings showed that younger students (kindergarten through second grade) found many of the engineering-related skills and activities more interesting than the older students (third through fifth grade); however, the older students rated more of the skills and activities as being important. Gender differences showed that girls typically rated themselves as being more competent, more interested in, and valuing the skills and activities that pertained more to mindset ideas, such as learning from your mistakes and failures or not giving up, whereas boys rated themselves higher in more of the hands-on activities, such as building with things like legos, blocks, and k’nex.
ContributorsHandlos, Jamie Lynn Harte (Author) / Miller, Cindy (Thesis director) / Reisslein, Martin (Committee member) / School of Life Sciences (Contributor) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05