Matching Items (467)
Filtering by

Clear all filters

ContributorsChan, Robbie (Performer) / McCarrel, Kyla (Performer) / Sadownik, Stephanie (Performer) / ASU Library. Music Library (Contributor)
Created2018-04-18
151631-Thumbnail Image.png
Description
Whenever a text is transmitted, or communicated by any means, variations may occur because editors, copyists, and performers are often not careful enough with the source itself. As a result, a flawed text may come to be accepted in good faith through repetition, and may often be preferred over the

Whenever a text is transmitted, or communicated by any means, variations may occur because editors, copyists, and performers are often not careful enough with the source itself. As a result, a flawed text may come to be accepted in good faith through repetition, and may often be preferred over the authentic version because familiarity with the flawed copy has been established. This is certainly the case with regard to Manuel M. Ponce's guitar editions. An inexact edition of a musical work is detrimental to several key components of its performance: musical interpretation, aesthetics, and the original musical concept of the composer. These phenomena may be seen in the case of Manuel Ponce's Suite in D Major for guitar. The single published edition by Peer International Corporation in 1967 with the revision and fingering of Manuel López Ramos contains many copying mistakes and intentional, but unauthorized, changes to the original composition. For the present project, the present writer was able to obtain a little-known copy of the original manuscript of this work, and to document these discrepancies in order to produce a new performance edition that is more closely based on Ponce's original work.
ContributorsReyes Paz, Ricardo (Author) / Koonce, Frank (Thesis advisor) / Solis, Theodore (Committee member) / Rotaru, Catalin (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsDaval, Charles (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-26
ContributorsMayo, Joshua (Performer) / ASU Library. Music Library (Publisher)
Created2021-04-29
ContributorsDominguez, Ramon (Performer) / ASU Library. Music Library (Publisher)
Created2021-04-15
ContributorsWhite, Bill (Performer) / ASU Library. Music Library (Publisher)
Created2021-04-03
ContributorsSanchez, Armand (Performer) / Nordstrom, Nathan (Performer) / Roubison, Ryan (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-13
ContributorsMiranda, Diego (Performer)
Created2018-04-06
131544-Thumbnail Image.png
Description
Microsolvation studies have begun to shed the light on the impact that single water molecules have on the structure of a molecule. The difference in behavior that molecules show when exposed to an increasing number of water molecules has been considered important but remains elusive. The cluster distributions of formic

Microsolvation studies have begun to shed the light on the impact that single water molecules have on the structure of a molecule. The difference in behavior that molecules show when exposed to an increasing number of water molecules has been considered important but remains elusive. The cluster distributions of formic acid were studied for its known importance as an intermediate in the water gas shift reaction. Implementations of the water gas shift reaction range from a wide range of applications. Studies have proposed implementations such as variety such as making water on the manned mission to mars and as an industrial energy source. The reaction pathway of formic acid favors decarboxylation in solvated conditions but control over the pathway is an important field of study. Formic acid was introduced into a high vacuum system in the form of a cluster beam via supersonic expansion and was ionized with the second harmonic (400nm) of a pump-probe laser. Mass spectra showed a ‘magic’ 5,1 (formic acid, water) peak which showed higher intensity than was usually observed in clusters with 1 water molecule. Peak integration showed a higher relative abundance for the 5,1 cluster as well and showed the increased binding favorability of this conformation. As a result, there is an enhanced probability of molecules sticking together in this arrangement and this is due to the stable, cage-like structure that the formic acid forms when surrounding the water molecule.
ContributorsQuiroz, Lenin Mejia (Author) / Sayres, Scott G. (Thesis director) / Mills, Jeremy (Committee member) / Biegasiewicz, Kyle (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05