Matching Items (2)
Filtering by

Clear all filters

132577-Thumbnail Image.png
Description
The most important task for a beginning computer science student, in order for them to succeed in their future studies, is to learn to be able to understand code. One of the greatest indicators of student success in beginning programming courses is the ability to read code and predict its

The most important task for a beginning computer science student, in order for them to succeed in their future studies, is to learn to be able to understand code. One of the greatest indicators of student success in beginning programming courses is the ability to read code and predict its output, as this shows that the student truly understands what each line of code is doing. Yet few tools available to students today focus on helping students to improve their ability to read code. The goal of the random Python program generator is to give students a tool to practice this important skill.

The program writes randomly generated, syntactically correct Python 3 code in order to provide students infinite examples from which to study. The end goal of the project is to create an interactive tool where beginning programming students can click a button to generate a random code snippet, check if what they predict the output to be is correct, and get an explanation of the code line by line. The tool currently lacks a front end, but it currently is able to write Python code that includes assignment statements, delete statements, if statements, and print statements. It supports boolean, float, integer, and string variable types.
ContributorsDiLorenzo, Kaitlyn (Author) / Meuth, Ryan (Thesis director) / Miller, Phillip (Committee member) / School of International Letters and Cultures (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
Phishing is one of most common and effective attack vectors in modern cybercrime. Rather than targeting a technical vulnerability in a computer system, phishing attacks target human behavioral or emotional tendencies through manipulative emails, text messages, or phone calls. Through PyAntiPhish, I attempt to create my own version of an

Phishing is one of most common and effective attack vectors in modern cybercrime. Rather than targeting a technical vulnerability in a computer system, phishing attacks target human behavioral or emotional tendencies through manipulative emails, text messages, or phone calls. Through PyAntiPhish, I attempt to create my own version of an anti-phishing solution, through a series of experiments testing different machine learning classifiers and URL features. With an end-goal implementation as a Chromium browser extension utilizing Python-based machine learning classifiers (those available via the scikit-learn library), my project uses a combination of Python, TypeScript, Node.js, as well as AWS Lambda and API Gateway to act as a solution capable of blocking phishing attacks from the web browser.
ContributorsYang, Branden (Author) / Osburn, Steven (Thesis director) / Malpe, Adwith (Committee member) / Ahn, Gail-Joon (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-05