Matching Items (11)
Filtering by

Clear all filters

148004-Thumbnail Image.png
Description

In oxygenic photosynthesis, conversion of solar energy to chemical energy is catalyzed by the<br/>pigment-protein complexes Photosystem II (PSII) and Photosystem I (PSI) embedded within the<br/>thylakoid membrane of photoautotrophs. The function of these pigment-protein complexes are<br/>conserved between all photoautotrophs, however, the oligomeric structure, as well as the<br/>spectroscopic properties of the PSI

In oxygenic photosynthesis, conversion of solar energy to chemical energy is catalyzed by the<br/>pigment-protein complexes Photosystem II (PSII) and Photosystem I (PSI) embedded within the<br/>thylakoid membrane of photoautotrophs. The function of these pigment-protein complexes are<br/>conserved between all photoautotrophs, however, the oligomeric structure, as well as the<br/>spectroscopic properties of the PSI complex, differ. In early evolving photoautotrophs, PSI<br/>exists in a trimeric organization, but in later evolving species this was lost and PSI exists solely<br/>as a monomer. While the reasons for a change in oligomerization are not fully understood, one<br/>of the 11 subunits within cyanobacterial PSI, PsaL, is thought to be involved in trimerization<br/>through the coordination of a calcium ion in an adjacent monomer. Recently published<br/>structures have demonstrated that PSI complexes are capable of trimerization without<br/>coordinating the calcium ion within PsaL.<br/>5 Here we explore the role the calcium ion plays in both<br/>the oligomeric and spectroscopic properties in PSI isolated from Synechocystis sp. PCC 6803.

ContributorsVanlandingham, Jackson R (Author) / Mazor, Yuval (Thesis director) / Mills, Jeremy (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
150123-Thumbnail Image.png
Description
Natural photosynthesis features a complex biophysical/chemical process that requires sunlight to produce energy rich products. It is one of the most important processes responsible for the appearance and sustainability of life on earth. The first part of the thesis focuses on understanding the mechanisms involved in regulation of light harvesting,

Natural photosynthesis features a complex biophysical/chemical process that requires sunlight to produce energy rich products. It is one of the most important processes responsible for the appearance and sustainability of life on earth. The first part of the thesis focuses on understanding the mechanisms involved in regulation of light harvesting, which is necessary to balance the absorption and utilization of light energy and in that way reduce the effect caused by photooxidative damage. In photosynthesis, carotenoids are responsible not only for collection of light, but also play a major role in protecting the photosynthetic system. To investigate the role of carotenoids in the quenching of the excited state of cyclic tetrapyrroles, two sets of dyads were studied. Both sets of dyads contain zinc phthalocyanine (Pc) covalently attached to carotenoids of varying conjugation lengths. In the first set of dyads, carotenoids were attached to the phthalocyanine via amide linkage. This set of dyads serves as a good model for understanding the molecular "gear-shift" mechanism, where the addition of one double bond can turn the carotenoid from a nonquencher to a very strong quencher of the excited state of a tetrapyrrole. In the second set of dyads, carotenoids were attached to phthalocyanine via a phenyl amino group. Two independent studies were performed on these dyads: femtosecond transient absorption and steady state fluorescence induced by two-photon excitation. In the transient absorption study it was observed that there is an instantaneous population of the carotenoid S1 state after Pc excitation, while two-photon excitation of the optically forbidden carotenoid S1 state shows 1Pc population. Both observations provide a strong indication of the existence of a shared excitonic state between carotenoid and Pc. Similar results were observed in LHC II complexes in plants, supporting the role of such interactions in photosynthetic down regulation. In the second chapter we describe the synthesis of porphyrin dyes functionalized with carboxylate and phosphonate anchoring groups to be used in the construction of photoelectrochemical cells containing a porphyrin-IrO2·nH2O complex immobilized on a TiO2 electrode. The research presented here is a step in the development of high potential porphyrin-metal oxide complexes to be used in the photooxidation of water. The last chapter focuses on developing synthetic strategies for the construction of an artificial antenna system consisting of porphyrin-silver nanoparticle conjugates, linked by DNA of varied length to study the distance dependence of the interaction between nanoparticles and the porphyrin chromophore. Preliminary studies indicate that at the distance of about 7-10 nm between porphyrin and silver nanoparticle is where the porphyrin absorption leading to fluorescence shows maximum enhancement. These new hybrid constructs will be helpful for designing efficient light harvesting systems.
ContributorsPillai, Smitha (Author) / Moore, Ana (Thesis advisor) / Moore, Thomas (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2011
152104-Thumbnail Image.png
Description
Developing a system capable of using solar energy to drive the conversion of an abundant and available precursor to fuel would profoundly impact humanity's energy use and thereby the condition of the global ecosystem. Such is the goal of artificial photosynthesis: to convert water to hydrogen using solar radiation as

Developing a system capable of using solar energy to drive the conversion of an abundant and available precursor to fuel would profoundly impact humanity's energy use and thereby the condition of the global ecosystem. Such is the goal of artificial photosynthesis: to convert water to hydrogen using solar radiation as the sole energy input and ideally do so with the use of low cost, abundant materials. Constructing photoelectrochemical cells incorporating photoanodes structurally reminiscent of those used in dye sensitized photovoltaic solar cells presents one approach to establishing an artificial photosynthetic system. The work presented herein describes the production, integration, and study of water oxidation catalysts, molecular dyes, and metal oxide based photoelectrodes carried out in the pursuit of developing solar water splitting systems.
ContributorsSherman, Benjamin D (Author) / Moore, Thomas (Thesis advisor) / Moore, Ana (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2013
150715-Thumbnail Image.png
Description
Most of the sunlight powering natural photosynthesis is absorbed by antenna arrays that transfer, and regulate the delivery of excitation energy to reaction centers in the chloroplast where photosynthesis takes place. Under intense sunlight the plants and certain organisms cannot fully utilize all of the sunlight received by antennas and

Most of the sunlight powering natural photosynthesis is absorbed by antenna arrays that transfer, and regulate the delivery of excitation energy to reaction centers in the chloroplast where photosynthesis takes place. Under intense sunlight the plants and certain organisms cannot fully utilize all of the sunlight received by antennas and excess redox species are formed which could potentially harm them. To prevent this, excess energy is dissipated by antennas before it reaches to the reaction centers to initiate electron transfer needed in the next steps of photosynthesis. This phenomenon is called non-photochemical quenching (NPQ). The mechanism of NPQ is not fully understood, but the process is believed to be initiated by a drop in the pH in thylakoid lumen in cells. This causes changes in otherwise nonresponsive energy acceptors which accept the excess energy, preventing oversensitization of the reaction center. To mimic this phenomenon and get insight into the mechanism of NPQ, a novel pH sensitive dye 3'6'-indolinorhodamine was designed and synthesized which in a neutral solution stays in a closed (colorless) form and does not absorb light while at low pH it opens (colored) and absorbs light. The absorption of the dye overlaps porphyrin emission, thus making energy transfer from the porphyrin to the dye thermodynamically possible. Several self-regulating molecular model systems were designed and synthesized consisting of this dye and zinc porphyrins organized on a hexaphenylbenzene framework to functionally mimic the role of the antenna in NPQ. When a dye-zinc porphyrin dyad is dissolved in an organic solvent, the zinc porphyrin antenna absorbs and emits light by normal photophysical processes. Time resolved fluorescence experiments using the single-photon-timing method with excitation at 425 nm and emission at 600 nm yielded a lifetime of 2.09 ns for the porphyrin first excited singlet state. When acetic acid is added to the solution of the dyad, the pH sensitive dye opens and quenches the zinc porphyrin emission decreasing the lifetime of the porphyrin first excited singlet state to 23 ps, and converting the excitation energy to heat. Under similar experimental conditions in a neutral solution, a model hexad containing the dye and five zinc porphyrins organized on a hexaphenylbenzene core decays exponentially with a time constant of 2.1 ns, which is essentially the same lifetime as observed for related monomeric zinc porphyrins. When a solution of the hexad is acidified, the dye opens and quenches all porphyrin first excited singlet states to <40 ps. This converts the excitation energy to heat and renders the porphyrins kinetically incompetent to readily donate electrons by photoinduced electron transfer, thereby mimicking the role of the antenna in photosynthetic photoprotection.
ContributorsBhushan, Kul (Author) / Gust, Devens (Thesis advisor) / Moore, Ana (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2012
132854-Thumbnail Image.png
Description
The Heliobacterial Reaction Center (HbRC) is the simplest Type I Reaction Center (RC) known today. However, upon illumination it has been found to produce menaquinol, and this has led to experiments investigating the function of this reduction scheme. The goal of the experiment was to investigate the mechanisms of menaquinol

The Heliobacterial Reaction Center (HbRC) is the simplest Type I Reaction Center (RC) known today. However, upon illumination it has been found to produce menaquinol, and this has led to experiments investigating the function of this reduction scheme. The goal of the experiment was to investigate the mechanisms of menaquinol production through the use of Photosystem II (PSII) herbicides that are known to inhibit the QB quinone site in Type II RCs. Seven herbicides were chosen, and out of all of them terbuthylazine showed the greatest effect on the RC in isolated membranes when Transient Absorption Spectroscopy was used. In addition, terbuthylazine decreased menaquinone reduction to menaquinol by ~72%, slightly more than the reported effect of teburtryn (68%)1. In addition, terbuthylazine significantly impacted growth of whole cells under high light more than terbutryn.
ContributorsOdeh, Ahmad Osameh (Author) / Redding, Kevin (Thesis director) / Woodbury, Neal (Committee member) / Allen, James (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
171900-Thumbnail Image.png
Description
The growing global energy demand coupled with the need for a low-carbon economy requires innovative solutions. Microalgal oxygenic photosynthesis provides a sustainable platform for efficient capture of sunlight and storage of some of the energy in the form of reduced carbon derivatives. Under certain conditions, the photosynthetic reductant can be

The growing global energy demand coupled with the need for a low-carbon economy requires innovative solutions. Microalgal oxygenic photosynthesis provides a sustainable platform for efficient capture of sunlight and storage of some of the energy in the form of reduced carbon derivatives. Under certain conditions, the photosynthetic reductant can be shunted to molecular hydrogen production, yet the efficiency and longevity of such processes are insufficient. In this work, re-engineering of the heterodimeric type I reaction center, also known as photosystem I (PSI), in the green microalga Chlamydomonas reinhardtii was shown to dramatically change algal metabolism and improve photobiological hydrogen production in vivo. First, an internal fusion of the small PsaC subunit of PSI harboring the terminal photosynthetic electron transport chain cofactors with the endogenous algal hydrogenase 2 (HydA2) was demonstrated to assemble on the PSI core in vivo, albeit at ~15% the level of normal PSI accumulation, and make molecular hydrogen from water oxidation. Second, the more physiologically active algal endogenous hydrogenase 1 (HydA1) was fused to PsaC in a similar fashion, resulting in improved levels of accumulation (~75%). Both algal hydrogenases chimeras remained extremely oxygen sensitive and benefited from oxygen removal methods. On the example of PSI-HydA1 chimera, it was demonstrated that the active site of hydrogenase can be reactivated in vivo after complete inactivation by oxygen without the need for new polypeptide synthesis. Third, the hydrogenase domain of Megasphaera elsdenii bacterial hydrogenase (MeHydA) was also fused with psaC, resulting in expression of a PSI-hydrogenase chimera at ~25% the normal level. The heterologous hydrogenase chimera could be activated with the algal maturation system, despite only 32 % sequence identity (43 % similarity). All constructs demonstrated diminished ability to reduce PSI electron acceptors (ferredoxin and flavodoxin) in vitro and indirect evidence indicated that this was true in vivo as well. Finally, chimeric design considerations are discussed in light of the models generated by Alphafold2 and how could they be used to further optimize stability of the PSI-hydrogenase chimeric complexes.
ContributorsKanygin, Andrey (Author) / Redding, Kevin E (Thesis advisor) / Jones, Anne K (Committee member) / Mazor, Yuval (Committee member) / Arizona State University (Publisher)
Created2022
193040-Thumbnail Image.png
Description
The thylakoid membranes of oxygenic photosynthetic organisms contain four large membrane complexes vital for photosynthesis: photosystem II and photosystem I (PSII and PSI, respectively), the cytochrome b6f complex and ATP synthase. Two of these complexes, PSII and PSI, utilize solar energy to carry out the primary reaction of photosynthesis, light

The thylakoid membranes of oxygenic photosynthetic organisms contain four large membrane complexes vital for photosynthesis: photosystem II and photosystem I (PSII and PSI, respectively), the cytochrome b6f complex and ATP synthase. Two of these complexes, PSII and PSI, utilize solar energy to carry out the primary reaction of photosynthesis, light induced charge separation. In vivo, both photosystems associate with multiple antennae to increase their light absorption cross section. The antennae, Iron Stress Induced A (IsiA), is expressed in cyanobacteria as part of general stress response and forms a ring system around PSI. IsiA is a member of a large and relatively unexplored antennae family prevalent in cyanobacteria. The structure of the PSI-IsiA super-complex from the cyanobacteria Synechocystis sp. PCC 6803 was resolved to high resolution, revealing how IsiA interacts with PSI as well as the chlorophyll organization within this antennae system. Despite these structural insights, the basis for the binding between 18 IsiA subits and PSI is not fully resolved. Several IsiA mutants were constructed using insights from the atomic structure of PSI-IsiA, revealing the role of the C-terminus of IsiA in its interaction with PSI.
ContributorsLi, Jin (Author) / Mazor, Yuval (Thesis advisor) / Chiu, Po-Lin (Committee member) / Mills, Jeremy (Committee member) / Arizona State University (Publisher)
Created2024
154991-Thumbnail Image.png
Description
Sunlight, the most abundant source of energy available, is diffuse and intermittent; therefore it needs to be stored in chemicals bonds in order to be used any time. Photosynthesis converts sunlight into useful chemical energy that organisms can use for their functions. Artificial photosynthesis aims to use the essential chemistry

Sunlight, the most abundant source of energy available, is diffuse and intermittent; therefore it needs to be stored in chemicals bonds in order to be used any time. Photosynthesis converts sunlight into useful chemical energy that organisms can use for their functions. Artificial photosynthesis aims to use the essential chemistry of natural photosynthesis to harvest solar energy and convert it into fuels such as hydrogen gas. By splitting water, tandem photoelectrochemical solar cells (PESC) can produce hydrogen gas, which can be stored and used as fuel. Understanding the mechanisms of photosynthesis, such as photoinduced electron transfer, proton-coupled electron transfer (PCET) and energy transfer (singlet-singlet and triplet-triplet) can provide a detailed knowledge of those processes which can later be applied to the design of artificial photosynthetic systems. This dissertation has three main research projects. The first part focuses on design, synthesis and characterization of suitable photosensitizers for tandem cells. Different factors that can influence the performance of the photosensitizers in PESC and the attachment and use of a biomimetic electron relay to a water oxidation catalyst are explored. The second part studies PCET, using Nuclear Magnetic Resonance and computational chemistry to elucidate the structure and stability of tautomers that comprise biomimetic electron relays, focusing on the formation of intramolecular hydrogen bonds. The third part of this dissertation uses computational calculations to understand triplet-triplet energy transfer and the mechanism of quenching of the excited singlet state of phthalocyanines in antenna models by covalently attached carotenoids.
ContributorsTejeda Ferrari, Marely (Author) / Moore, Ana (Thesis advisor) / Mujica, Vladimiro (Thesis advisor) / Gust, John (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2016
152667-Thumbnail Image.png
Description
Photochromic molecules, which photoisomerize between two chemically and optically distinct states, are well suited for electron and energy transfer to covalently attached chromophores. This dissertation aims to manipulate electron and energy transfer by photochromic control in a number of organic molecular systems. Herein the synthesis, characterization and function of these

Photochromic molecules, which photoisomerize between two chemically and optically distinct states, are well suited for electron and energy transfer to covalently attached chromophores. This dissertation aims to manipulate electron and energy transfer by photochromic control in a number of organic molecular systems. Herein the synthesis, characterization and function of these organic molecular systems will be described. Electron and energy transfer were quantified by the use of steady state absorbance and fluorescence, as well as time-resolved fluorescence and transient absorbance. A dithienylethene-porphrin-fullerene triad was synthesized to investigate photochromic control of photo-induced electron transfer. Control of two distinct electron transfer pathways was achieved by photochromic switching. A molecular dyad was synthesized, in which fluorescence was modulated by energy transfer by photoinduced isomerization. Also described is a triplet-triplet annihilation upconversion system that covalently attaches fluorophores to improve quantum yield. Overall these studies demonstrate complex molecular switching systems, which may lead to advancement in organic electronic applications and organic based artificial photosynthesis systems.
ContributorsCrisman, Jeffrey (Author) / Gust, John D (Thesis advisor) / Rose, Seth (Committee member) / Moore, Ana (Committee member) / Arizona State University (Publisher)
Created2014
155512-Thumbnail Image.png
Description
The primary carbon fixing enzyme Rubisco maintains its activity through release of trapped inhibitors by Rubisco activase (Rca). Very little is known about the interaction, but binding has been proposed to be weak and transient. Extensive effort was made to develop Förster resonance energy transfer (FRET) based assays to understand

The primary carbon fixing enzyme Rubisco maintains its activity through release of trapped inhibitors by Rubisco activase (Rca). Very little is known about the interaction, but binding has been proposed to be weak and transient. Extensive effort was made to develop Förster resonance energy transfer (FRET) based assays to understand the physical interaction between Rubisco and Rca, as well as understand subunit exchange in Rca.

Preparations of labeled Rubisco and Rca were utilized in a FRET-based binding assay. Although initial data looked promising, this approach was not fruitful, as no true FRET signal was observed. One possibility is that under the conditions tested, Rca is not able to undergo the structural reorganizations necessary to achieve binding-competent conformations. Rca may also be asymmetric, leading to less stable binding of an already weak interaction.

To better understand the structural adjustments of Rca, subunit exchange between different oligomeric species was examined. It was discovered that subunit exchange is nucleotide dependent, with ADP giving the fastest exchange, ATP giving slower exchange and ATPS inhibiting exchange. Manganese, like ADP, destabilizes subunit-subunit interactions for rapid and facile exchange between oligomers. Three different types of assemblies were deduced from the rates of subunit exchange: rigid types with extremely slow dissociation of individual protomers, tight assemblies with the physiological substrate ATP, and loose assemblies that provide fast exchange due to high ADP.

Information gained about Rca subunit exchange can be used to reexamine the physical interaction between Rubisco and Rca using the FRET-binding assay. These binding assays will provide insight into Rca states able to interact with Rubisco, as well as define conditions to generate bound states for structural analysis. In combination with assembly assays, subunit exchange assays and reactivation studies will provide critical information about the structure/function relationship of Rca in the presence of different nucleotides. Together, these FRET-based assays will help to characterize the Rca regulation mechanism and provide valuable insight into the Rubisco reactivation mechanism.
ContributorsForbrook, Dayna S (Author) / Wachter, Rebekka M. (Thesis advisor) / Allen, James (Committee member) / Wang, Xu (Committee member) / Arizona State University (Publisher)
Created2017