Matching Items (5)
Filtering by

Clear all filters

131458-Thumbnail Image.png
Description
The changes in marine ecological conditions brought on by warming and stratification of the oceans have radically shifted many marine environments around the globe. This project aimed to better characterize the aggregation behavior of the abundant picocyanobacterium Prochlorococcus marinus, which is hypothesized to dominate over other phytoplankton as the primary

The changes in marine ecological conditions brought on by warming and stratification of the oceans have radically shifted many marine environments around the globe. This project aimed to better characterize the aggregation behavior of the abundant picocyanobacterium Prochlorococcus marinus, which is hypothesized to dominate over other phytoplankton as the primary autotroph in increasingly warmer and nutrient poor oceans. This aggregation, believed to be mediated through the secretion of sticky Transparent Exopolymeric Substances (TEP), might be key for Prochlorococcus to sink throughout the ocean and serve as a source of carbon to other communities within its environment. Considering the relatively low concentration of TEP secreted by Prochlorococcus when on its own, this study explored the synergistic effect that heterotrophic bacteria and inorganic minerals in the surrounding seawater may have on the aggregation of P. marinus. This was done by inoculating P. marinus and the model heterotroph Marinobacter adhaerens HP15 individually and mixed in cylindrical roller tanks with the addition of ballasting clay minerals into roller tanks to simulate constant sinking for 7 days. The aggregates which formed after rolling were quantified and their sinking velocities and excess densities were measured. Our results indicate that the most numerous and densest aggregates formed when Prochlorococcus was in the presence of both M. adhaerens and kaolinite clay particles. I will discuss how methodology, particularly cell number, may play a role in the enhanced aggregation that I found when Prochlorococcus was cultured together with the Marinobacter.
ContributorsAouad, Samer Ghassan (Author) / Neuer, Susanne (Thesis director) / Cadillo-Quiroz, Hinsby (Committee member) / Cruz, Bianca (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132389-Thumbnail Image.png
Description
Prochlorococcus marinus (MED4), a genus of marine picocyanobacteria that proliferates in open oligotrophic ocean, is one of the most abundant photosynthetic microbes in the world, estimated to contribute up to 10% of the ocean’s primary production. The productivity of these microorganisms is controlled by macronutrient availability in the surface waters.

Prochlorococcus marinus (MED4), a genus of marine picocyanobacteria that proliferates in open oligotrophic ocean, is one of the most abundant photosynthetic microbes in the world, estimated to contribute up to 10% of the ocean’s primary production. The productivity of these microorganisms is controlled by macronutrient availability in the surface waters. The ratio of macronutrients in the ocean was defined, by Alfred Redfield, as an elemental ratio of 106C:16N:1P. However, the C:N:P ratio varies based on region, season, temperature and irradiance, as well as the composition of the primary producers. In oligotrophic gyres, these nutrient ratios are elevated from the Redfield stoichiometry, but whether this ratio exerts influence on the growth rate of the organism has not been investigated. Elemental stoichiometry of available nutrients can affect the aggregation of organic carbon and exportation of the particles to the ocean depths. The purpose of this study was to investigate the effects of nutrient limitation on aggregation and transparent exopolymeric particle (TEP) production which aids in aggregation. My findings suggested that nutrient limitation reduces TEP production and does not increase aggregate volume concentration. With continued warming, certain regions of the ocean will become more oligotrophic, which further decreases the nutrient supply available for Prochlorococcus. My research shows that this could lead to decreased exportation of organic carbon matter to the depths of the sea.
ContributorsRoy, Kevin Thomas (Author) / Neuer, Susanne (Thesis director) / Cadillo-Quiroz, Hinsby (Committee member) / Cruz, Bianca (Committee member) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
171556-Thumbnail Image.png
Description
The biological carbon pump in the ocean is initiated by the photosynthetic fixation of atmospheric carbon dioxide into particulate or dissolved organic carbon by phytoplankton. A fraction of this organic matter sinks to depth mainly in the form of microaggregates (5-60 μm) and visible macroaggregates. These aggregates are composed of

The biological carbon pump in the ocean is initiated by the photosynthetic fixation of atmospheric carbon dioxide into particulate or dissolved organic carbon by phytoplankton. A fraction of this organic matter sinks to depth mainly in the form of microaggregates (5-60 μm) and visible macroaggregates. These aggregates are composed of cells, minerals, and other sources of organic carbon. Exopolymeric substances (EPS) are exudated by heterotrophic bacteria and phytoplankton and may form transparent exopolymeric particles (TEP) that act as a glue-like matrix for marine aggregates. Heterotrophic bacteria have been found to influence the aggregation of phytoplankton and in some cases result in an increase in TEP production, but it is unclear if marine heterotrophic bacteria can produce TEP and how they contribute to aggregation. Pseudoalteromonas carrageenovora, Vibrio thalassae, and Marinobacter adhaerens HP15 are heterotrophic marine bacteria that were found associated with sinking particles in an oligotrophic gyre station in the subtropical North Atlantic. These bacteria were grown in axenic cultures to determine growth, TEP production, and aggregation. They were also inoculated into roller tanks used to simulate open ocean conditions to determine their ability to form macroaggregates. Treatments with added kaolinite clay simulated aeolic dust input from the Sahara. M. adhaerens HP15 had the highest TEP concentration but the lowest cell-normalized TEP production at all growth stages compared to the other bacteria. Additionally, M. adhaerens HP15 also had the lowest microaggregate formation. The cell-normalized TEP production and microaggregate formation was not significantly different between P. carrageenovora and V. thalassae. All bacteria formed visible macroaggregates in roller tanks with clay addition and exhibited high sinking velocities (150-1200 m d-1) that are comparable to those of aggregates formed by large mineral ballasted phytoplankton. Microaggregates in the clay treatments declined during incubation, indicating that they aggregated to form the macroaggregates. The findings from this study show for the first time that heterotrophic bacteria can contribute to aggregation and the export of organic carbon to depth in the ocean.
ContributorsLivar, Britni (Author) / Neuer, Susanne (Thesis advisor) / Hartnett, Hilairy (Committee member) / Cadillo-Quiroz, Hinsby (Committee member) / Arizona State University (Publisher)
Created2022
168445-Thumbnail Image.png
Description
The efficiency of the ocean’s biological carbon pump is mediated by fast-sinking particles that quickly settle out of the euphotic zone. These particles are conventionally associated with micro- (> 20 µm) sized diatoms and coccolithophorids, thought to efficiently transport carbon to depth owing to their dense mineral structures, while pico-

The efficiency of the ocean’s biological carbon pump is mediated by fast-sinking particles that quickly settle out of the euphotic zone. These particles are conventionally associated with micro- (> 20 µm) sized diatoms and coccolithophorids, thought to efficiently transport carbon to depth owing to their dense mineral structures, while pico- (< 2 µm) and nanophytoplankton (2-20 µm) are considered to contribute negligibly due to their small size and low sinking speed. Despite burgeoning evidence of their export, the mechanisms behind it remain poorly understood. The objective of this dissertation is to acquire a mechanistic understanding of the contribution of pico- and nanophytoplankton to particle fluxes. I tested the hypotheses that pico- and nanophytoplankton may be exported via the following pathways: 1) physical aggregation due to the production of sticky Transparent Exopolymeric Particles (TEP), mediated by interactions with heterotrophic bacteria, 2) attachment to lithogenic minerals, and 3) repackaging by zooplankton. I found that despite the traditional view of being too small to sink, pico- and nanophytoplankton form aggregates rich in TEP, allowing cells to scavenge lithogenic minerals and thus increase their effective size and density. I discovered that interactions with heterotrophic bacteria were significant in mediating the process of aggregation by influencing the production and/or the composition of the phytoplankton-derived TEP. Bacteria differentially influenced aggregation and TEP production; some species enhanced aggregation without affecting TEP production, and vice-versa. Finally, by determining the microbial composition of sinking particles in an open-ocean site, I found pico- and nanophytoplankton significantly associated with particles sourced from crustaceous zooplankton, suggesting that their export is largely mediated by mesozooplankton. Overall, I show that the hypothesized mechanisms of pico- and nanophytoplankton export are not mutually exclusive, but instead occur subsequently. Given the right conditions for their aggregation in the natural environment, such as interactions with aggregation-enhancing heterotrophic bacteria and/or the presence of lithogenic minerals, their cells and aggregates can escape remineralization within the euphotic zone, and thus be susceptible to grazing by mesozooplankton export within fecal pellets. The results of this dissertation provide a mechanistic framework for the contribution of pico- and nanophytoplankton to ocean particle fluxes.
ContributorsCruz, Bianca Nahir (Author) / Neuer, Susanne (Thesis advisor) / Lomas, Michael W (Committee member) / Passow, Uta (Committee member) / Cadillo-Quiroz, Hinsby (Committee member) / Arizona State University (Publisher)
Created2021
154958-Thumbnail Image.png
Description
Obesity is a worldwide epidemic accompanied by multiple comorbidities. Bariatric surgery is currently the most efficient treatment for morbid obesity and its comorbidities. The etiology of obesity is unknown, although genetic, environmental, and most recently, microbiome elements have been recognized as contributors to this rising epidemic. The

Obesity is a worldwide epidemic accompanied by multiple comorbidities. Bariatric surgery is currently the most efficient treatment for morbid obesity and its comorbidities. The etiology of obesity is unknown, although genetic, environmental, and most recently, microbiome elements have been recognized as contributors to this rising epidemic. The role of the gut microbiome in weight-loss or weight-gain warrants investigation, and bariatric surgery provides a good model to study influences of the microbiome on host metabolism. The underlying goals of my research were to analyze (i) the factors that change the microbiome after bariatric surgery, (ii) the effects of different types of bariatric surgeries on the gut microbiome and metabolism, (iii) the role of the microbiome on the success of bariatric surgery, and (iv) temporal and spatial changes of the microbiome after bariatric surgery.

Roux-en-Y gastric bypass (RYGB) rearranges the gastrointestinal tract and reduces gastric acid secretions. Therefore, pH could be one of the factors that change microbiome after RYGB. Using mixed-cultures and co-cultures of species enriched after RYGB, I showed that as small as 0.5 units higher gut pH can aid in the survival of acid-sensitive microorganisms after RYGB and alter gut microbiome function towards the production of weight loss-associated metabolites. By comparing microbiome after two different bariatric surgeries, RYGB and laparoscopic adjustable gastric banding (LAGB), I revealed that gut microbiome structure and metabolism after RYGB are remarkably different than LAGB, and LAGB change microbiome minimally. Given the distinct RYGB alterations to the microbiome, I examined the contribution of the microbiome to weight loss. Analyses revealed that Fusobacterium might lessen the success of RYGB by producing putrescine, which may enhance weight-gain and could serve as biomarker for unsuccessful RYGB.

Finally, I showed that RYGB alters the luminal and the mucosal microbiome. Changes in gut microbial metabolic products occur in the short-term and persist over the long-term. Overall, the work in this dissertation provides insight into how the gut microbiome structure and function is altered after bariatric surgery, and how these changes potentially affect the host metabolism. These findings will be helpful in subsequent development of microbiome-based therapeutics to treat obesity.
ContributorsIlhan, Zehra Esra (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / DiBaise, John K. (Committee member) / Cadillo-Quiroz, Hinsby (Committee member) / Rittmann, Bruce E. (Committee member) / Arizona State University (Publisher)
Created2016