Matching Items (3)
Filtering by

Clear all filters

149975-Thumbnail Image.png
Description
Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems

Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems of P management. The goal of my research was to increase our understanding of urban P cycling in the context of urban resource management through analysis of existing ecological and socio-economic data supplemented with expert interviews in order to facilitate a transition to sustainable P management. Study objectives were to: I) Quantify and map P stocks and flows in the Phoenix metropolitan area and analyze the drivers of spatial distribution and dynamics of P flows; II) examine changes in P-flow dynamics at the urban agricultural interface (UAI), and the drivers of those changes, between 1978 and 2008; III) compare the UAI's average annual P budget to the global agricultural P budget; and IV) explore opportunities for more sustainable P management in Phoenix. Results showed that Phoenix is a sink for P, and that agriculture played a primary role in the dynamics of P cycling. Internal P dynamics at the UAI shifted over the 30-year study period, with alfalfa replacing cotton as the main locus of agricultural P cycling. Results also suggest that the extent of P recycling in Phoenix is proportionally larger than comparable estimates available at the global scale due to the biophysical characteristics of the region and the proximity of various land uses. Uncertainty remains about the effectiveness of current recycling strategies and about best management strategies for the future because we do not have sufficient data to use as basis for evaluation and decision-making. By working in collaboration with practitioners, researchers can overcome some of these data limitations to develop a deeper understanding of the complexities of P dynamics and the range of options available to sustainably manage P. There is also a need to better connect P management with that of other resources, notably water and other nutrients, in order to sustainably manage cities.
ContributorsMetson, Genevieve (Author) / Childers, Daniel (Thesis advisor) / Aggarwal, Rimjhim (Thesis advisor) / Redman, Charles (Committee member) / Arizona State University (Publisher)
Created2011
131407-Thumbnail Image.png
Description
There are two main sections of this thesis: Codebook development and case coding. Over the course of my two years of involvement with the collaborative governance lab with Drs. Schoon and Carr Kelman, I worked on helping to complete the coding manual built by the lab to test variables from

There are two main sections of this thesis: Codebook development and case coding. Over the course of my two years of involvement with the collaborative governance lab with Drs. Schoon and Carr Kelman, I worked on helping to complete the coding manual built by the lab to test variables from the literature using case studies. My main deliverable was building a Qualtrics survey to collect case studies. Using this Qualtrics survey, the lab will be able to collect coded cases by distributing the survey link through research networks. My thesis project included building the interface for the survey, participating in testing the intercoder reliability of the codebook, and coding one case, the Four Forest Restoration Initiative (4FRI), to provide insight on the collaborative governance strategies of this collaboration. Coding 4FRI also acted as a preliminary test of the survey, helping to provide further information on how users of the codebook might interact with the survey, and allowing the lab to generate a test report of survey results.
ContributorsGoddard, Kevin W (Author) / Carr Kelman, Candice (Thesis director) / Childers, Daniel (Committee member) / School of Sustainability (Contributor, Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
155607-Thumbnail Image.png
Description
Biological soil crusts (biocrust) are photosynthetic communities of organisms forming in the top millimeters of unvegetated soil. Because soil crusts contribute several ecosystem services to the areas they inhabit, their loss under anthropogenic pressure has negative ecological consequences. There is a considerable interest in developing technologies for biocrust restoration such

Biological soil crusts (biocrust) are photosynthetic communities of organisms forming in the top millimeters of unvegetated soil. Because soil crusts contribute several ecosystem services to the areas they inhabit, their loss under anthropogenic pressure has negative ecological consequences. There is a considerable interest in developing technologies for biocrust restoration such as biocrust nurseries to grow viable inoculum and the optimization of techniques for field deployment of this inoculum. For the latter, knowledge of the natural rates of biocrust dispersal is needed. Lateral dispersal can be based on self-propelled motility by component microbes, or on passive transport through propagule entrainment in runoff water or wind currents, all of which remain to be assessed. I focused my research on determining the capacity of biocrust for lateral self-propelled dispersal. Over the course of one year, I set up two greenhouse experiments where sterile soil substrates were inoculated with biocrusts and where the lateral advancement of biocrust and their cyanobacteria was monitored using time-course photography, discrete determination of soil chlorophyll a concentration, and microscopic observations. Appropriate uninoculated controls were also set up and monitored. These experiments confirm that cyanobacterial biological soil crusts are capable of laterally expanding when provided with presumably optimal watering regime similar to field conditions and moderate temperatures. The maximum temperatures of Sonoran Desert summer (up to 42 °C), exacerbated in the greenhouse setting (48 °C), caused a loss of biomass and the cessation of lateral dispersal, which resumed as temperature decreased. In 8 independent experiments, biocrust communities advanced laterally at an average rate of 2 cm per month, which is half the maximal rate possible based on the instantaneous speed of gliding motility of the cyanobacterium Microcoleus vaginatus. In a span of three months, populations of M. vaginatus, M. steenstrupii, and Scytonema spp. advanced 1 cm/month on average. The advancing crust front was found to be preferentially composed of hormogonia (differentiated, fast-gliding propagules of cyanobacteria). Having established the potential for laterally self-propelled community dispersal (without wind or runoff contributions) will help inform restoration efforts by proposing minimal inoculum size and optimal distance between inoculum patches.
ContributorsSorochkina, Kira (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Rowe, Helen (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2017