Matching Items (10)
Filtering by

Clear all filters

135645-Thumbnail Image.png
Description
This thesis proposes the concept of soft robotic supernumerary limbs to assist the wearer in the execution of tasks, whether it be to share loads or replace an assistant. These controllable extra arms are made using soft robotics to reduce the weight and cost of the device, and are not

This thesis proposes the concept of soft robotic supernumerary limbs to assist the wearer in the execution of tasks, whether it be to share loads or replace an assistant. These controllable extra arms are made using soft robotics to reduce the weight and cost of the device, and are not limited in size and location to the user's arm as with exoskeletal devices. Soft robotics differ from traditional robotics in that they are made using soft materials such as silicone elastomers rather than hard materials such as metals or plastics. This thesis presents the design, fabrication, and testing of the arm, including the joints and the actuators to move them, as well as the design and fabrication of the human-body interface to unite man and machine. This prototype utilizes two types of pneumatically-driven actuators, pneumatic artificial muscles and fiber-reinforced actuators, to actuate the elbow and shoulder joints, respectively. The robotic limb is mounted at the waist on a backpack frame to avoid interfering with the wearer's biological arm. Through testing and evaluation, this prototype device proves the feasibility of soft supernumerary limbs, and opens up opportunities for further development into the field.
ContributorsOlson, Weston Roscoe (Author) / Polygerinos, Panagiotis (Thesis director) / Zhang, Wenlong (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133548-Thumbnail Image.png
Description
Prosthetic sockets are a static interface for dynamic residual limbs. As the user's activity level increases, the volume of the residual limb decreases by up to 11% and increases by as much as 7% after activity. Currently, volume fluctuation is addressed by adding/removing prosthetic socks to change the profile of

Prosthetic sockets are a static interface for dynamic residual limbs. As the user's activity level increases, the volume of the residual limb decreases by up to 11% and increases by as much as 7% after activity. Currently, volume fluctuation is addressed by adding/removing prosthetic socks to change the profile of the residual limb. However, this is time consuming. These painful/functional issues demand a prosthetic socket with an adjustable interface that can adapt to the user's needs. This thesis presents a prototype design for a dynamic soft robotic interface which addresses this need. The actuators are adjustable depending on the user's activity level, and their structure provides targeted compression to the soft tissue which helps to limit movement of the bone relative to the socket. The engineering process was used to create this design by defining system level requirements, exploring the design space, selecting a design, and then using testing/analysis to optimize that design. The final design for the soft robotic interface meets the applicable requirements, while other requirements for the electronics/controls will be completed as future work. Testing of the prototype demonstrated promising potential for the design with further refinement. Work on this project should be continued in future research/thesis projects in order to create a viable consumer product which can improve lower limb amputee's quality of life.
ContributorsHolmes, Breanna Swift (Author) / Zhang, Wenlong (Thesis director) / Polygerinos, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135079-Thumbnail Image.png
Description
This honors thesis project aims to design and develop the ideal design for a soft robotic grasper used in combination with a robotic supernumerary limb design for impaired individuals (i.e. a wearable robotic limb that branches out of the body), to help accomplish the tasks of daily living. Observations of

This honors thesis project aims to design and develop the ideal design for a soft robotic grasper used in combination with a robotic supernumerary limb design for impaired individuals (i.e. a wearable robotic limb that branches out of the body), to help accomplish the tasks of daily living. Observations of current grasper solutions for similar applications has led to a design that incorporates a soft, pneumatically controlled grasper which integrates with the existing limb. Computational models of the grasper design have been created which demonstrate the grasping capabilities of this proposal. Initial prototypes of this grasper approach have been fabricated for testing and analyses purposes to build a foundation for future implementation.
ContributorsThalman, Carly Megan (Author) / Polygerinos, Panagiotis (Thesis director) / Lande, Micah (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
The field of soft robotics is a very quickly growing field that has yet to be fully explored or implemented in all of the possible applications. Soft robotics shows the greatest degree of possibility for mimicking biological systems effectively and accurately. This study seeks to set the groundwork for the

The field of soft robotics is a very quickly growing field that has yet to be fully explored or implemented in all of the possible applications. Soft robotics shows the greatest degree of possibility for mimicking biological systems effectively and accurately. This study seeks to set the groundwork for the development of a biomimetic nautilus using soft robotic methods. The study shows background research and discusses the methods used to develop a nautilus themed sub aquatic robot that uses a double bladder system and a pump to generate thrust for movement. The study shows how the unit would be fabricated and constructed. The study also explores why the second stage of the design failed and how it could potentially be fixed in future iterations.
ContributorsCarlson, Caleb Elijah (Author) / Polygerinos, Panagiotis (Thesis director) / Parsey, John (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134557-Thumbnail Image.png
Description
Low back pain is a disorder which affects almost 80% of the American population at some time during their lifespan. Approximately, 90% of these episodes are resolved within six weeks to three months. As low back pain is usually a symptom of a medical condition; many cases cannot be given

Low back pain is a disorder which affects almost 80% of the American population at some time during their lifespan. Approximately, 90% of these episodes are resolved within six weeks to three months. As low back pain is usually a symptom of a medical condition; many cases cannot be given a definite diagnosis which renders the condition difficult to treat. The estimated annual cost for back pain treatment amounts to $50 billion, in the United States alone. Several devices have already been designed for low back pain assistance. However, in the majority, the main drawback appears to be the rigidity of the device, which limits flexibility and comfort. Soft pneumatic actuators have the potential to provide the appropriate applications for low back pain prior- and post-surgery rehabilitation purposes. In this work, the design and development of a soft robotic back orthotic device that has the capability to relieve back pain by assisting patients to fully achieve the upright position and stabilize the lumbosacral spine, is presented. Unlike conventional robotic assistive devices, this pneumatically actuated back orthosis provides dynamic support while being light weight, comfortable and cost affordable.
ContributorsGovin, Deven (Co-author) / Saenz, Luis (Co-author) / Polygerinos, Panagiotis (Thesis director) / Snyder, Laura (Committee member) / W. P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
190916-Thumbnail Image.png
Description
Soft robotics has garnered attention for its substantial prospective in various domains, such as manipulation and interactions with humans, by offering competitive advantages against rigid robotic systems, including inherent compliance and variable stiffness. Despite these benefits, their theoretically infinite degrees of freedom and prominent nonlinearities pose significant challenges in developing

Soft robotics has garnered attention for its substantial prospective in various domains, such as manipulation and interactions with humans, by offering competitive advantages against rigid robotic systems, including inherent compliance and variable stiffness. Despite these benefits, their theoretically infinite degrees of freedom and prominent nonlinearities pose significant challenges in developing dynamic models and guiding the robots along desired paths. Additionally, soft robots may exhibit rigid behaviors and potentially collide with their surroundings during path tracking tasks, particularly when possible contact points are unknown. In this dissertation, reduced-order models are used to describe the behaviors of three different soft robot designs, including both linear parameter varying (LPV) and augmented rigid robot (ARR) models. While the reduced-order model captures the majority of the soft robot's dynamics, modeling uncertainties notably remain. Non-repeated modeling uncertainties are addressed by categorizing them as a lumped disturbance, employing two methodologies, $H_\infty$ method and nonlinear disturbance observer (NDOB) based sliding mode control, for its rejection. For repeated disturbances, an iterative learning control (ILC) with a P-type learning function is implemented to enhance trajectory tracking efficacy. Furthermore,for non-repeated disturbances, the NDOB facilitates the contact estimation, and its results are jointly used with a switching algorithm to modify the robot trajectories. The stability proof of all controllers and corresponding simulation and experimental results are provided. For a path tracking task of a soft robot with multi-segments, a robust control strategy that combines a LPV model with an innovative improved nonlinear disturbance observer-based adaptive sliding mode control (INASMC). The control framework employs a first-order LPV model for dynamic representation, leverages an improved disturbance observer for accurate disturbance forecasting, and utilizes adaptive sliding mode control to effectively counteract uncertainties. The tracking error under the proposed controller is proven to be asymptotically stable, and the controller's effectiveness is is validated with simulation and experimental results. Ultimately, this research mitigates the inherent uncertainty in soft robot modeling, thereby enhancing their functionality in contact-intensive tasks.
ContributorsQIAO, ZHI (Author) / Zhang, Wenlong (Thesis advisor) / Marvi, Hamidreza (Committee member) / Lee, Hyunglae (Committee member) / Berman, Spring (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2023
189313-Thumbnail Image.png
Description
This dissertation introduces and examines Soft Curved Reconfigurable Anisotropic Mechanisms (SCRAMs) as a solution to address actuation, manufacturing, and modeling challenges in the field of soft robotics, with the aim of facilitating the broader implementation of soft robots in various industries. SCRAM systems utilize the curved geometry of thin elastic

This dissertation introduces and examines Soft Curved Reconfigurable Anisotropic Mechanisms (SCRAMs) as a solution to address actuation, manufacturing, and modeling challenges in the field of soft robotics, with the aim of facilitating the broader implementation of soft robots in various industries. SCRAM systems utilize the curved geometry of thin elastic structures to tackle these challenges in soft robots. SCRAM devices can modify their dynamic behavior by incorporating reconfigurable anisotropic stiffness, thereby enabling tailored locomotion patterns for specific tasks. This approach simplifies the actuation of robots, resulting in lighter, more flexible, cost-effective, and safer soft robotic systems. This dissertation demonstrates the potential of SCRAM devices through several case studies. These studies investigate virtual joints and shape change propagation in tubes, as well as anisotropic dynamic behavior in vibrational soft twisted beams, effectively demonstrating interesting locomotion patterns that are achievable using simple actuation mechanisms. The dissertation also addresses modeling and simulation challenges by introducing a reduced-order modeling approach. This approach enables fast and accurate simulations of soft robots and is compatible with existing rigid body simulators. Additionally, this dissertation investigates the prototyping processes of SCRAM devices and offers a comprehensive framework for the development of these devices. Overall, this dissertation demonstrates the potential of SCRAM devices to overcome actuation, modeling, and manufacturing challenges in soft robotics. The innovative concepts and approaches presented have implications for various industries that require cost-effective, adaptable, and safe robotic systems. SCRAM devices pave the way for the widespread application of soft robots in diverse domains.
ContributorsJiang, Yuhao (Author) / Aukes, Daniel (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Srivastava, Siddharth (Committee member) / Arizona State University (Publisher)
Created2023
156204-Thumbnail Image.png
Description
The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation

The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation therapies focus on strengthening motor skills, such as grasping, employ multiple objects of varying stiffness and devices that are bulky, costly, and have limited range of stiffness due to the rigid mechanisms employed in their variable stiffness actuators. This research project presents a portable cost-effective soft robotic haptic device with a broad stiffness range that is adjustable and can be utilized in both clinical and home settings. The device eliminates the need for multiple objects by employing a pneumatic soft structure made with highly compliant materials that act as the actuator as well as the structure of the haptic interface. It is made with interchangeable soft elastomeric sleeves that can be customized to include materials of varying stiffness to increase or decrease the stiffness range. The device is fabricated using existing 3D printing technologies, and polymer molding and casting techniques, thus keeping the cost low and throughput high. The haptic interface is linked to either an open-loop system that allows for an increased pressure during usage or closed-loop system that provides pressure regulation in accordance with the stiffness the user specifies. A preliminary evaluation is performed to characterize the effective controllable region of variance in stiffness. Results indicate that the region of controllable stiffness was in the center of the device, where the stiffness appeared to plateau with each increase in pressure. The two control systems are tested to derive relationships between internal pressure, grasping force exertion on the surface, and displacement using multiple probing points on the haptic device. Additional quantitative evaluation is performed with study participants and juxtaposed to a qualitative analysis to ensure adequate perception in compliance variance. Finally, a qualitative evaluation showed that greater than 60% of the trials resulted in the correct perception of stiffness in the haptic device.
ContributorsSebastian, Frederick (Author) / Polygerinos, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Fu, Qiushi (Committee member) / Arizona State University (Publisher)
Created2018
156390-Thumbnail Image.png
Description
This work presents the integration of user intent detection and control in the development of the fluid-driven, wearable, and continuum, Soft Poly-Limb (SPL). The SPL utilizes the numerous traits of soft robotics to enable a novel approach to provide safe and compliant mobile manipulation assistance to healthy and impaired users.

This work presents the integration of user intent detection and control in the development of the fluid-driven, wearable, and continuum, Soft Poly-Limb (SPL). The SPL utilizes the numerous traits of soft robotics to enable a novel approach to provide safe and compliant mobile manipulation assistance to healthy and impaired users. This wearable system equips the user with an additional limb made of soft materials that can be controlled to produce complex three-dimensional motion in space, like its biological counterparts with hydrostatic muscles. Similar to the elephant trunk, the SPL is able to manipulate objects using various end effectors, such as suction adhesion or a soft grasper, and can also wrap its entire length around objects for manipulation. User control of the limb is demonstrated using multiple user intent detection modalities. Further, the performance of the SPL studied by testing its capability to interact safely and closely around a user through a spatial mobility test. Finally, the limb’s ability to assist the user is explored through multitasking scenarios and pick and place tests with varying mounting locations of the arm around the user’s body. The results of these assessments demonstrate the SPL’s ability to safely interact with the user while exhibiting promising performance in assisting the user with a wide variety of tasks, in both work and general living scenarios.
ContributorsVale, Nicholas Marshall (Author) / Polygerinos, Panagiotis (Thesis advisor) / Zhang, Wenlong (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2018
158364-Thumbnail Image.png
Description
Current exosuit technologies utilizing soft inflatable actuators for gait assistance have drawbacks of having slow dynamics and limited portability. The first part of this thesis focuses on addressing the aforementioned issues by using inflatable actuator composites (IAC) and a portable pneumatic source. Design, fabrication and finite element modeling of the

Current exosuit technologies utilizing soft inflatable actuators for gait assistance have drawbacks of having slow dynamics and limited portability. The first part of this thesis focuses on addressing the aforementioned issues by using inflatable actuator composites (IAC) and a portable pneumatic source. Design, fabrication and finite element modeling of the IAC are presented. Volume optimization of the IAC is done by varying its internal volume using finite element methods. A portable air source for use in pneumatically actuated wearable devices is also presented. Evaluation of the system is carried out by analyzing its maximum pressure and flow output. Electro-pneumatic setup, design and fabrication of the developed air source are also shown. To provide assistance to the user using the exosuit in appropriate gait phases, a gait detection system is needed. In the second part of this thesis, a gait sensing system utilizing soft fabric based inflatable sensors embedded in a silicone based shoe insole is developed. Design, fabrication and mechanical characterization of the soft gait detection sensors are given. In addition, integration of the sensors, each capable of measuring loads of 700N in a silicone based shoe insole is also shown along with its possible application in detection of various gait phases. Finally, a possible integration of the actuators, air source and gait detection shoes in making of a portable soft exosuit for knee assistance is given.
Contributorspoddar, souvik (Author) / Zhang, Wenlong (Thesis advisor) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2020