Matching Items (527)
Filtering by

Clear all filters

161291-Thumbnail Image.png
Description
This dissertation focuses on the structure-function relationships of nanomaterials (NMs) and some of their applications in environmental engineering. The aim is to investigate NMs of different surface chemistries and assess their interactions with biological models, evaluate the weathering impact and degradation parameters to improve polymer coatings, test their efficiency for

This dissertation focuses on the structure-function relationships of nanomaterials (NMs) and some of their applications in environmental engineering. The aim is to investigate NMs of different surface chemistries and assess their interactions with biological models, evaluate the weathering impact and degradation parameters to improve polymer coatings, test their efficiency for contaminant removal and provide further understanding in the safe design of nanomaterials. Nanoecotoxicological risk assessment currently suffers from a lack of testing procedures adapted to nanomaterials. Graphene oxide (GO) is a carbon nanomaterial (CNM) that consists of a single layer of carbon atoms arranged in a hexagonal network. It is decorated with a high density of oxygen functional groups including epoxide and hydroxyl moieties on the basal planes and carboxylic and carbonyl groups at the edges. The changes in surface chemistry give GO unique properties that can be tailored for a function. Additionally, because of its simple synthesis and flexible chemistry, GO has been a popular building block of many composite CNMs. In environmental engineering, specifically, water treatment, GO has been studied by itself or as a composite for pollutant removal, biofouling reduction, and as an antimicrobial agent, just to name a few. Like GO, silver (Ag) is another NM widely used in water treatment for its biocidal properties. Despite the recent growth in this field, a fundamental understanding of the function-structure relationships in NMs is still progressing. Through a systematic set of experiments, the structure-properties-function and structure-properties-hazard relationships were investigated. These relationships can be used to establish guidelines to engineer “safe-by-design” functional nanomaterials, where materials are tailored to enhance their function while minimizing their inherent biological or environmental hazard.
ContributorsBarrios, Ana Cecilia (Author) / Perreault, Francois (Thesis advisor) / Abbaszadegan, Morteza (Committee member) / Conroy-Ben, Otakuye (Committee member) / Hua-Wang, Qing (Committee member) / Arizona State University (Publisher)
Created2021
161823-Thumbnail Image.png
Description
While understanding of failure mechanisms for polymeric composites have improved vastly over recent decades, the ability to successfully monitor early failure and subsequent prevention has come of much interest in recent years. One such method to detect these failures involves the use of mechanochemistry, a field of chemistry in which

While understanding of failure mechanisms for polymeric composites have improved vastly over recent decades, the ability to successfully monitor early failure and subsequent prevention has come of much interest in recent years. One such method to detect these failures involves the use of mechanochemistry, a field of chemistry in which chemical reactions are initiated by deforming highly-strained bonds present in certain moieties. Mechanochemistry is utilized in polymeric composites as a means of stress-sensing, utilizing weak and force-responsive chemical bonds to activate signals when embedded in a composite material. These signals can then be detected to determine the amount of stress applied to a composite and subsequent potential damage that has occurred due to the stress. Among mechanophores, the cinnamoyl moiety is capable of stress response through fluorescent signal under mechanical load. The cinnamoyl group is fluorescent in its initial state and capable of undergoing photocycloaddition in the presence of ultraviolet (UV) light, followed by subsequent reversion when under mechanical load. Signal generation before the yield point of the material provides a form of damage precursor detection.This dissertation explores the implementation of mechanophores in novel approaches to overcome some of the many challenges within the mechanochemistry field. First, new methods of mechanophore detection were developed through utilization of Fourier transform infrared (FTIR) spectroscopy signals and in-situ stress sensing. Developing an in-situ testing method provided a two-fold advantage of higher resolution and more time efficiency over current methods involving image analysis with a fluorescent microscope. Second, bonding mechanophores covalently into the backbone of an epoxy matrix mitigated property loss due to mechanophore incorporation. This approach was accomplished through functionalizing either the resin or hardener component of the matrix. Finally, surface functionalization of fibers was performed and allowed for unaltered fabrication procedures of composite layups as well as provided increased adhesion at the fiber-matrix interphase. The developed materials could enable a simple, non-invasive, and non-detrimental structural health monitoring approach.
ContributorsGunckel, Ryan Patrick (Author) / Dai, Lenore (Thesis advisor) / Chattopadhyay, Aditi (Thesis advisor) / Lind Thomas, Mary Laura (Committee member) / Liu, Yongming (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2021
Description
Current Li-ion battery technologies are limited by the low capacities of theelectrode materials and require developments to meet stringent performance demands for future energy storage devices. Electrode materials that alloy with Li, such as Si, are one of the most promising alternatives for Li-ion battery anodes due to their high capacities. Tetrel (Si,

Current Li-ion battery technologies are limited by the low capacities of theelectrode materials and require developments to meet stringent performance demands for future energy storage devices. Electrode materials that alloy with Li, such as Si, are one of the most promising alternatives for Li-ion battery anodes due to their high capacities. Tetrel (Si, Ge, Sn) clathrates are a class of host-guest crystalline structures in which Tetrel elements form a cage framework and encapsulate metal guest atoms. These structures can form with defects such as framework/guest atom substitutions and vacancies which result in a wide design space for tuning materials properties. The goal of this work is to establish structure property relationships within the context of Li-ion battery anode applications. The type I Ba 8 Al y Ge 46-y clathrates are investigated for their electrochemical reactions with Li and show high capacities indicative of alloying reactions. DFT calculations show that Li insertion into the framework vacancies is favorable, but the migration barriers are too high for room temperature diffusion. Then, guest free type I clathrates are investigated for their Li and Na migration barriers. The results show that Li migration in the clathrate frameworks have low energy barriers (0.1- 0.4 eV) which suggest the possibility for room temperature diffusion. Then, the guest free, type II Si clathrate (Na 1 Si 136 ) is synthesized and reversible Li insertion into the type II Si clathrate structure is demonstrated. Based on the reasonable capacity (230 mAh/g), low reaction voltage (0.30 V) and low volume expansion (0.21 %), the Si clathrate could be a promising insertion anode for Li-ion batteries. Next, synchrotron X-ray measurements and pair distribution function (PDF) analysis are used to investigate the lithiation pathways of Ba 8 Ge 43 , Ba 8 Al 16 Ge 30 , Ba 8 Ga 15 Sn 31 and Na 0.3 Si 136 . The results show that the Ba-clathrates undergo amorphous phase transformations which is distinct from their elemental analogues (Ge, Sn) which feature crystalline lithiation pathways. Based on the high capacities and solid-solution reaction mechanism, guest-filled clathrates could be promising precursors to form alloying anodes with novel electrochemical properties. Finally, several high temperature (300-550 °C) electrochemical synthesis methods for Na-Si and Na-Ge clathrates are demonstrated in a cell using a Na β’’-alumina solid electrolyte.
ContributorsDopilka, Andrew (Author) / Chan, Candace K (Thesis advisor) / Zhuang, Houlong (Committee member) / Peng, Xihong (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2021
161813-Thumbnail Image.png
Description
Oxygen transfer reactions are central to many catalytic processes, including those underlying automotive exhaust emissions control and clean energy conversion. The catalysts used in these applications typically consist of metal nanoparticles dispersed on reducible oxides (e.g., Pt/CeO2), since reducible oxides can transfer their lattice oxygen to reactive adsorbates at the

Oxygen transfer reactions are central to many catalytic processes, including those underlying automotive exhaust emissions control and clean energy conversion. The catalysts used in these applications typically consist of metal nanoparticles dispersed on reducible oxides (e.g., Pt/CeO2), since reducible oxides can transfer their lattice oxygen to reactive adsorbates at the metal-support interface. There are many outstanding questions regarding the atomic and nanoscale spatial variation of the Pt/CeO2 interface, Pt metal particle, and adjacent CeO2 oxide surface during catalysis. To this end, a range of techniques centered around aberration-corrected environmental transmission electron microscopy (ETEM) were developed and employed to visualize and characterize the atomic-scale structural behavior of CeO2-supported Pt catalysts under reaction conditions (in situ) and/or during catalysis (operando). A model of the operando ETEM reactor was developed to simulate the gas and temperature profiles during conditions of catalysis. Most importantly, the model provides a tool for relating the reactant conversion measured with spectroscopy to the reaction rate of the catalyst that is imaged on the TEM grid. As a result, this work has produced a truly operando TEM methodology, since the structure observed during an experiment can be directly linked to quantitative chemical kinetics of the same catalyst. This operando ETEM approach was leveraged to investigate structure-activity relationships for CO oxidation over Pt/CeO2 catalysts. Correlating atomic-level imaging with catalytic turnover frequency reveals a direct relationship between activity and dynamic structural behavior that (a) destabilizes the supported Pt particle, (b) marks an enhanced rate of oxygen vacancy creation and annihilation, and (c) leads to increased strain and reduction in the surface of the CeO2 support. To further investigate the structural meta-stability (i.e., fluxionality) of 1 – 2 nm CeO2-supported Pt nanoparticles, time-resolved in situ AC-ETEM was employed to visualize the catalyst’s dynamical behavior with high spatiotemporal resolution. Observations are made under conditions relevant to the CO oxidation and water-gas shift (WGS) reactions. Finally, deep learning-based convolutional neural networks were leveraged to develop novel denoising techniques for ultra-low signal-to-noise images of catalytic nanoparticles.
ContributorsVincent, Joshua Lawrence (Author) / Crozier, Peter A (Thesis advisor) / Liu, Jingyue (Committee member) / Muhich, Christopher L (Committee member) / Nannenga, Brent L (Committee member) / Singh, Arunima K (Committee member) / Arizona State University (Publisher)
Created2021
161815-Thumbnail Image.png
Description
Nanocrystalline (NC) materials are of great interest to researchers due to their multitude of properties such as exceptional strength and radiation resistance owing to their high fraction of grain boundaries that act as defect sinks for radiation-induced defects, provided they are microstructurally stable. In this dissertation, radiation effects in microstructurally

Nanocrystalline (NC) materials are of great interest to researchers due to their multitude of properties such as exceptional strength and radiation resistance owing to their high fraction of grain boundaries that act as defect sinks for radiation-induced defects, provided they are microstructurally stable. In this dissertation, radiation effects in microstructurally stable bulk NC copper (Cu)- tantalum (Ta) alloys engineered with uniformly dispersed Ta nano-precipitates are systematically probed. Towards this, both ex-situ and in-situ irradiations using heavy (self) ion, helium ion, and concurrent dual ion beams (He+Au) followed by isochronal annealing inside TEM were utilized to understand radiation tolerance and underlying mechanisms of microstructure evolution in stable NC alloys. With systematic self-ion irradiation, the high density of tantalum nanoclusters in Cu-10at.%Ta were observed to act as stable sinks in suppressing radiation hardening, in addition to stabilizing the grain boundaries; while the large incoherent precipitates experienced ballistic mixing and dissolution at high doses. Interestingly, the alloy exhibited a microstructure self-healing mechanism, where with a moderate thermal input, this dissolved tantalum eventually re-precipitated, thus replenishing the sink density. The high stability of these tantalum nanoclusters is attributed to the high positive enthalpy of mixing of tantalum in copper which also acted as a critical driving force against atomic mixing to facilitate re-precipitation of tantalum nanoclusters. Furthermore, these nanoclusters proved to be effective trapping sites for helium, thus sequestering helium into isolated small bubbles and aid in increasing the overall swelling threshold of the alloy. The alloy was then compositionally optimized to reduce the density of large incoherent precipitates without compromising on the grain size and nanocluster density (Cu-3at.%Ta) which resulted in a consistent and more promising response to high dose self-ion irradiation. In-situ helium and dual beam irradiation coupled with isochronal annealing till 723 K, also revealed a comparable microstructural stability and enhanced ability of Cu-3Ta in controlling bubble growth and suppressing swelling compared to Cu-10Ta indicating a promising improvement in radiation tolerance in the optimized composition. Overall, this work helps advancing the current understanding of radiation tolerance in stable nanocrystalline alloys and aid developing design strategies for engineering radiation tolerant materials with stable interfaces.
ContributorsSrinivasan, Soundarya (Author) / Solanki, Kiran (Thesis advisor) / Peralta, Pedro (Committee member) / Alford, Terry (Committee member) / Darling, Kristopher (Committee member) / Arizona State University (Publisher)
Created2021
161840-Thumbnail Image.png
Description
Soft thermal interface materials (TIMs) are critical for improving the thermal management of advanced microelectronic devices. Despite containing high thermal conductivity filler materials, TIM performance is limited by thermal resistances between fillers, filler-matrix, and external contact resistance. Recently, room-temperature liquid metals (LMs) started to be adapted as an alternative TIM

Soft thermal interface materials (TIMs) are critical for improving the thermal management of advanced microelectronic devices. Despite containing high thermal conductivity filler materials, TIM performance is limited by thermal resistances between fillers, filler-matrix, and external contact resistance. Recently, room-temperature liquid metals (LMs) started to be adapted as an alternative TIM for their low thermal resistance and fluidic nature. However, LM-based TIMs face challenges due to their low viscosity, non-wetting qualities, chemical reactivity, and corrosiveness towards aluminum.To address these concerns, this dissertation research investigates fundamental LM properties and assesses their utility for developing multiphase LM composites with strong thermal properties. Augmentation of LM with gallium oxide and air capsules lead to LM-base foams with improved spreading and patterning. Gallium oxides are responsible for stabilizing LM foam structures which is observed through electron microscopy, revealing a temporal evolution of air voids after shear mixing in air. The presence of air bubbles and oxide fragments in LM decreases thermal conductivity while increasing its viscosity as the shear mixing time is prolonged. An overall mechanism for foam generation in LM is presented in two stages: 1) oxide fragment accumulation and 2) air bubble entrapment and propagation. To avoid the low thermal conductivity air content, mixing of non-reactive particles of tungsten or silicon carbide (SiC) into LM forms paste-like LM-based mixtures that exhibit tunable high thermal conductivity 2-3 times beyond the matrix material. These filler materials remain chemically stable and do not react with LM over time while suspended. Gallium oxide-mediated wetting mechanisms for these non-wetting fillers are elucidated in oxygen rich and deficient environments. Three-phase composites consisting of LM and Ag-coated SiC fillers dispersed in a noncuring silicone oil matrix address LM-corrosion related issues. Ag-coated SiC particles enable improved wetting of the LM, and the results show that applied pressure is necessary for bridging of these LM-coated particles to improve filler thermal resistance. Compositional tuning between the fillers leads to thermal improvements in this multiphase composite. The results of this dissertation work aim to advance our current understanding of LMs and how to design LM-based composite materials for improved TIMs and other soft thermal applications.
ContributorsKong, Wilson (Author) / Wang, Robert Y (Thesis advisor) / Rykaczewski, Konrad (Thesis advisor) / Green, Matthew D (Committee member) / Tongay, Sefaattin (Committee member) / Arizona State University (Publisher)
Created2021
161844-Thumbnail Image.png
Description
Thermal management is a critical aspect of microelectronics packaging and often centers around preventing central processing units (CPUs) and graphics processing units (GPUs) from overheating. As the need for power going into these processors increases, so too does the need for more effective thermal management strategies. One such strategy is

Thermal management is a critical aspect of microelectronics packaging and often centers around preventing central processing units (CPUs) and graphics processing units (GPUs) from overheating. As the need for power going into these processors increases, so too does the need for more effective thermal management strategies. One such strategy is to utilize additive manufacturing to fabricate heat sinks with bio-inspired and cellular structures and is the focus of this thesis. In this study, a process was developed for manufacturing the copper alloy CuNi2SiCr on the 100w Concept Laser Mlab laser powder bed fusion 3D printer to obtain parts that were 94% dense, while dealing with challenges of low absorptivity in copper and its high potential for oxidation. The developed process was then used to manufacture and test heat sinks with traditional pin and fin designs to establish a baseline cooling effect, as determined from tests conducted on a substrate, CPU and heat spreader assembly. Two additional heat sinks were designed, the first of these being bio-inspired and the second incorporating Triply Periodic Minimal Surface (TPMS) cellular structures, with the aim of trying to improve the cooling effect relative to commercial heat sinks. The results showed that the pure copper commercial pin-design heat sink outperformed the additive manufactured (AM) pin-design heat sink under both natural and forced convection conditions due to its approximately tenfold higher thermal conductivity, but that the gap in performance could be bridged using the bio-inspired and Schwarz-P heat sink designs developed in this work and is an encouraging indicator that further improvements could be obtained with improved alloys, heat treatments and even more innovative designs.
ContributorsYaple, Jordan Marie (Author) / Bhate, Dhruv (Thesis advisor) / Azeredo, Bruno (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2021
161698-Thumbnail Image.png
Description
2D materials with reduced symmetry have gained great interest in the past decade due to the arising quantum properties introduced by the structural asymmetry. A particular example is called 2D Janus materials. Named after Roman god Janus with two faces, Janus materials have different chemical compositions on the two sides

2D materials with reduced symmetry have gained great interest in the past decade due to the arising quantum properties introduced by the structural asymmetry. A particular example is called 2D Janus materials. Named after Roman god Janus with two faces, Janus materials have different chemical compositions on the two sides of materials, leading to a structure with broken mirror symmetry. Electronegativity difference of the facial elements induces a built-in polarization field pointing out of the plane, which has driven a lot of theory predictions on Rashba splitting, high- temperature ferromagnetism, Skyrmion formation, and so on. Previously reported experimental synthesis of Janus 2D materials relies on high-temperature processing, which limits the crystallinity of as produced 2D layers. In this dissertation, I present a room temperature selective epitaxial atomic re- placement (SEAR) method to convert CVD-grown transition metal dichalcogenides (TMDs) into a Janus structure. Chemically reactive H2 plasma is used to selectively etch off the top layer of chalcogen atoms and the introduction of replacement chalco- gen source in-situ allows for the achievement of Janus structures in one step at room temperature. It is confirmed that the produced Janus monolayers possess high crys- tallinity and good excitonic properties. Moving forward, I show the fabrication of lateral and vertical heterostructures of Janus materials, which are predicted to show exotic properties because of the intrinsic polarization field. To efficiently screen other kinds of interesting Janus structures, a new plasma chamber is designed to allow in-situ optical measurement on the target monolayer during the SEAR process. Successful conversion is seen on mechanically exfoliated MoSe2 and WSe2, and insights into reaction kinetics are gain from Raman spectra evolution. Using the monitoring ability, Janus SNbSe is synthesized for the first time. It’s also demonstrated that the overall crystallinity of as produced Janus monolayer SWSe and SMoSe are correlated with the source of monolayer TMDs. Overall, the synthesis of the Janus monolayers using the described method paves the way to the production of highly crystalline Janus materials, and with the in-situ monitoring ability, a deeper understanding of the mechanism is reached. This will accelerate future exploration of other Janus materials synthesis, and confirmation and discovery of their exciting quantum properties.
ContributorsQin, Ying (Author) / Tongay, Sefaattin (Thesis advisor) / Zhuang, Houlong (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2021
158863-Thumbnail Image.png
Description
The maximum theoretical efficiency of a terrestrial non-concentrated silicon solar cell is 29.4%, as obtained from detailed balance analysis. Over 90% of the current silicon photovoltaics market is based on solar cells with diffused junctions (Al-BSF, PERC, PERL, etc.), which are limited in performance by increased non-radiative recombination in the

The maximum theoretical efficiency of a terrestrial non-concentrated silicon solar cell is 29.4%, as obtained from detailed balance analysis. Over 90% of the current silicon photovoltaics market is based on solar cells with diffused junctions (Al-BSF, PERC, PERL, etc.), which are limited in performance by increased non-radiative recombination in the doped regions. This limitation can be overcome through the use of passivating contacts, which prevent recombination at the absorber interfaces while providing the selectivity to efficiently separate the charge carriers generated in the absorber. This thesis aims at developing an understanding of how the material properties of the contact affect device performance through simulations.The partial specific contact resistance framework developed by Onno et al. aims to link material behavior to device performance specifically at open circuit. In this thesis, the framework is expanded to other operating points of a device, leading to a model for calculating the partial contact resistances at any current flow. The error in calculating these resistances is irrelevant to device performance resulting in an error in calculating fill factor from resistances below 0.1% when the fill factors of the cell are above 70%, i.e., for cells with good passivation and selectivity.
Further, silicon heterojunction (SHJ) and tunnel-oxide based solar cells are simulated in 1D finite-difference modeling package AFORS-HET. The effects of material property changes on device performance are investigated using novel contact materials like Al0.8Ga0.2As (hole contact for SHJ) and ITO (electron contact for tunnel-oxide cells). While changing the bandgap and electron affinity of the contact affect the height of the Schottky barrier and hence contact resistivity, increasing the doping of the contact will increase its selectivity. In the case of ITO, the contact needs to have a work function below 4.2 eV to be electron selective, which suggests that other low work function TCOs (like AZO) will be more applicable as alternative dopant-free electron contacts. The AFORS-HET model also shows that buried doped regions arising from boron diffusion in the absorber can damage passivation and decrease the open circuit voltage of the device.
ContributorsDasgupta, Sagnik (Author) / Holman, Zachary (Thesis advisor) / Onno, Arthur (Committee member) / Wang, Qing Hua (Committee member) / Arizona State University (Publisher)
Created2020
158879-Thumbnail Image.png
Description
Lateral programmable metallization cells (PMC) utilize the properties of electrodeposits grown over a solid electrolyte channel. Such devices have an active anode and an inert cathode separated by a long electrodeposit channel in a coplanar arrangement. The ability to transport large amount of metallic mass across the channel makes these

Lateral programmable metallization cells (PMC) utilize the properties of electrodeposits grown over a solid electrolyte channel. Such devices have an active anode and an inert cathode separated by a long electrodeposit channel in a coplanar arrangement. The ability to transport large amount of metallic mass across the channel makes these devices attractive for various More-Than-Moore applications. Existing literature lacks a comprehensive study of electrodeposit growth kinetics in lateral PMCs. Moreover, the morphology of electrodeposit growth in larger, planar devices is also not understood. Despite the variety of applications, lateral PMCs are not embraced by the semiconductor industry due to incompatible materials and high operating voltages needed for such devices. In this work, a numerical model based on the basic processes in PMCs – cation drift and redox reactions – is proposed, and the effect of various materials parameters on the electrodeposit growth kinetics is reported. The morphology of the electrodeposit growth and kinetics of the electrodeposition process are also studied in devices based on Ag-Ge30Se70 materials system. It was observed that the electrodeposition process mainly consists of two regimes of growth – cation drift limited regime and mixed regime. The electrodeposition starts in cation drift limited regime at low electric fields and transitions into mixed regime as the field increases. The onset of mixed regime can be controlled by applied voltage which also affects the morphology of electrodeposit growth. The numerical model was then used to successfully predict the device kinetics and onset of mixed regime. The problem of materials incompatibility with semiconductor manufacturing was solved by proposing a novel device structure. A bilayer structure using semiconductor foundry friendly materials was suggested as a candidate for solid electrolyte. The bilayer structure consists of a low resistivity oxide shunt layer on top of a high resistivity ion carrying oxide layer. Devices using Cu2O as the low resistivity shunt on top of Cu doped WO3 oxide were fabricated. The bilayer devices provided orders of magnitude improvement in device performance in the context of operating voltage and switching time. Electrical and materials characterization revealed the structure of bilayers and the mechanism of electrodeposition in these devices.
ContributorsChamele, Ninad (Author) / Kozicki, Michael (Thesis advisor) / Barnaby, Hugh (Committee member) / Newman, Nathan (Committee member) / Gonzalez-Velo, Yago (Committee member) / Arizona State University (Publisher)
Created2020