Matching Items (632)
Filtering by

Clear all filters

152021-Thumbnail Image.png
Description
Metal hydride materials have been intensively studied for hydrogen storage applications. In addition to potential hydrogen economy applications, metal hydrides offer a wide variety of other interesting properties. For example, hydrogen-dominant materials, which are hydrides with the highest hydrogen content for a particular metal/semimetal composition, are predicted to display high-temperature

Metal hydride materials have been intensively studied for hydrogen storage applications. In addition to potential hydrogen economy applications, metal hydrides offer a wide variety of other interesting properties. For example, hydrogen-dominant materials, which are hydrides with the highest hydrogen content for a particular metal/semimetal composition, are predicted to display high-temperature superconductivity. On the other side of the spectrum are hydrides with small amounts of hydrogen (0.1 - 1 at.%) that are investigated as viable magnetic, thermoelectric or semiconducting materials. Research of metal hydride materials is generally important to gain fundamental understanding of metal-hydrogen interactions in materials. Hydrogenation of Zintl phases, which are defined as compounds between an active metal (alkali, alkaline earth, rare earth) and a p-block metal/semimetal, were attempted by a hot sintering method utilizing an autoclave loaded with gaseous hydrogen (< 9 MPa). Hydride formation competes with oxidative decomposition of a Zintl phase. The oxidative decomposition, which leads to a mixture of binary active metal hydride and p-block element, was observed for investigated aluminum (Al) and gallium (Ga) containing Zintl phases. However, a new phase Li2Al was discovered when Zintl phase precursors were synthesized. Using the single crystal x-ray diffraction (SCXRD), the Li2Al was found to crystallize in an orthorhombic unit cell (Cmcm) with the lattice parameters a = 4.6404(8) Å, b = 9.719(2) Å, and c = 4.4764(8) Å. Increased demand for materials with improved properties necessitates the exploration of alternative synthesis methods. Conventional metal hydride synthesis methods, like ball-milling and autoclave technique, are not responding to the demands of finding new materials. A viable alternative synthesis method is the application of high pressure for the preparation of hydrogen-dominant materials. Extreme pressures in the gigapascal ranges can open access to new metal hydrides with novel structures and properties, because of the drastically increased chemical potential of hydrogen. Pressures up to 10 GPa can be easily achieved using the multi-anvil (MA) hydrogenations while maintaining sufficient sample volume for structure and property characterization. Gigapascal MA hydrogenations using ammonia borane (BH3NH3) as an internal hydrogen source were employed in the search for new hydrogen-dominant materials. Ammonia borane has high gravimetric volume of hydrogen, and additionally the thermally activated decomposition at high pressures lead to a complete hydrogen release at reasonably low temperature. These properties make ammonia borane a desired hydrogen source material. The missing member Li2PtH6 of the series of A2PtH6 compounds (A = Na to Cs) was accessed by employing MA technique. As the known heavier analogs, the Li2PtH6 also crystallizes in a cubic K2PtCl6-type structure with a cell edge length of 6.7681(3) Å. Further gigapascal hydrogenations afforded the compounds K2SiH6 and Rb2SiH6 which are isostructural to Li2PtH6. The cubic K2SiH6 and Rb2SiH6 are built from unique hypervalent SiH62- entities with the lattice parameters of 7.8425(9) and 8.1572(4) Å, respectively. Spectroscopic analysis of hexasilicides confirmed the presence of hypervalent bonding. The Si-H stretching frequencies at 1550 cm-1 appeared considerably decreased in comparison with a normal-valent (2e2c) Si-H stretching frequencies in SiH4 at around 2200 cm-1. However, the observed stretching modes in hypervalent hexasilicides were in a reasonable agreement with Ph3SiH2- (1520 cm-1) where the hydrogen has the axial (3e4c bonded) position in the trigoal bipyramidal environment.
ContributorsPuhakainen, Kati (Author) / Häussermann, Ulrich (Thesis advisor) / Seo, Dong (Thesis advisor) / Kouvetakis, John (Committee member) / Wolf, George (Committee member) / Arizona State University (Publisher)
Created2013
152027-Thumbnail Image.png
Description
This study examined the role of substance use in the relationship between the working alliance and outcome symptomatology. In this study, two groups of participants were formed: the at risk for substance abuse (ARSA) group consisted of participants who indicated 'almost always,' 'frequently,' 'sometimes,' or 'rarely' on either of two

This study examined the role of substance use in the relationship between the working alliance and outcome symptomatology. In this study, two groups of participants were formed: the at risk for substance abuse (ARSA) group consisted of participants who indicated 'almost always,' 'frequently,' 'sometimes,' or 'rarely' on either of two items on the Outcome Questionnaire-45.2 (OQ-45.2) (i.e., the eye-opener item: "After heavy drinking, I need a drink the next morning to get going" and the annoyed item: "I feel annoyed by people who criticize my drinking (or drug use)"). The non-ARSA group consisted of participants who indicated 'never' on both of the eye-opener and annoyed screening items on the OQ-45.2. Data available from a counselor-training center for a client participant sample (n = 68) was used. As part of the usual counselor training center procedures, clients completed questionnaires after their weekly counseling session. The measures included the Working Alliance Inventory and the OQ-45.2. Results revealed no significant differences between the ARSA and non-ARSA groups in working alliance, total outcome symptomology, or in any of the three subscales of symptomatology. Working alliance was not found to be significant in predicting outcome symptomatology in this sample and no moderation effect of substance use on the relationship between working alliance and outcome symptomatology was found. This study was a start into the exploration of the role of substance use in the relationship between working alliance and outcome symptomatology in individual psychotherapy. Further research should be conducted to better understand substance use populations in individual psychotherapy.
ContributorsHachiya, Laura Y (Author) / Bernstein, Bianca (Thesis advisor) / Tran, Giac-Thao (Committee member) / Homer, Judith (Committee member) / Arizona State University (Publisher)
Created2013
152028-Thumbnail Image.png
Description
Previous research indicates that difficulties in emotion regulation and greater dissociation from one's emotions are often observed among trauma survivors. Further, trauma survivors often show greater negative emotions such as anger, and diminished positive emotions such as happiness. Relatively less is known about the relationship between posttraumatic stress symptoms, dissociation,

Previous research indicates that difficulties in emotion regulation and greater dissociation from one's emotions are often observed among trauma survivors. Further, trauma survivors often show greater negative emotions such as anger, and diminished positive emotions such as happiness. Relatively less is known about the relationship between posttraumatic stress symptoms, dissociation, emotion regulation difficulties, and non-trauma related emotional experiences in daily life. This study examined whether greater reports of posttraumatic stress symptoms, difficulties in emotion regulation, and dissociative tendencies were associated with greater intensity of anger and lower intensity of happiness during a relived emotions task (i.e., recalling and describing autobiographical memories evoking specific emotions). Participants were 50 individuals who had experienced a traumatic event and reported a range of posttraumatic stress symptoms. Participants rated how they felt while recalling specific emotional memories, as well as how they remembered feeling at the time of the event. Results showed that dissociative tendencies was the best predictor of greater intensity of anger and, contrary to the hypothesis, dissociative tendencies was predictive of greater happiness intensity as well. These findings are consistent with previous research indicating a paradoxical effect of heightened anger reactivity among individuals with dissociative tendencies. In addition, researchers have argued that individuals with a history of traumatization do not report lower positive emotional experiences. The present findings may suggest the use of dissociation as a mechanism to avoid certain trauma related emotions (e.g, fear and anxiety), in turn creating heightened experiences of other emotions such as anger and happiness.
ContributorsTorres, Dhannia L (Author) / Robinson Kurpius, Sharon (Thesis advisor) / Roberts, Nicole A. (Committee member) / Homer, Judith (Committee member) / Arizona State University (Publisher)
Created2013
152195-Thumbnail Image.png
Description
Topological insulators with conducting surface states yet insulating bulk states have generated a lot of interest amongst the physics community due to their varied characteristics and possible applications. Doped topological insulators have presented newer physical states of matter where topological order co&ndashexists; with other physical properties (like magnetic order). The

Topological insulators with conducting surface states yet insulating bulk states have generated a lot of interest amongst the physics community due to their varied characteristics and possible applications. Doped topological insulators have presented newer physical states of matter where topological order co&ndashexists; with other physical properties (like magnetic order). The electronic states of these materials are very intriguing and pose problems and the possible solutions to understanding their unique behaviors. In this work, we use Electron Energy Loss Spectroscopy (EELS) – an analytical TEM tool to study both core&ndashlevel; and valence&ndashlevel; excitations in Bi2Se3 and Cu(doped)Bi2Se3 topological insulators. We use this technique to retrieve information on the valence, bonding nature, co-ordination and lattice site occupancy of the undoped and the doped systems. Using the reference materials Cu(I)Se and Cu(II)Se we try to compare and understand the nature of doping that copper assumes in the lattice. And lastly we utilize the state of the art monochromated Nion UltraSTEM 100 to study electronic/vibrational excitations at a record energy resolution from sub-nm regions in the sample.
ContributorsSubramanian, Ganesh (Author) / Spence, John (Thesis advisor) / Jiang, Nan (Committee member) / Chen, Tingyong (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2013
152147-Thumbnail Image.png
Description
ABSTRACT Perfectionism has been conceptualized as a relatively stable, independent, multidimensional personality construct in research during the last two decades. Despite general agreement that perfectionism is dimensional in nature, analyses using these instruments vacillate between a dimensional approach and a categorical approach (Broman-Fulks, Hill, & Green, 2008; Stoeber & Otto,

ABSTRACT Perfectionism has been conceptualized as a relatively stable, independent, multidimensional personality construct in research during the last two decades. Despite general agreement that perfectionism is dimensional in nature, analyses using these instruments vacillate between a dimensional approach and a categorical approach (Broman-Fulks, Hill, & Green, 2008; Stoeber & Otto, 2006). The goal of the current study was two-fold. One aim was to examine the structural nature of two commonly used measures of perfectionism, the APS-R and the HFMPS. Latent class and factor analyses were conducted to determine the dimensions and categories that underlie the items of these two instruments. A second aim was to determine whether perfectionism classes or perfectionism factors better predicted 4 criterion variables of career indecision. Results lent evidence to the claim that both the APS-R and HFMPS are best used as dimensional, rather than categorical instruments. From a substantive perspective, results indicated that both positive and negative aspects of perfectionism successfully predicted career indecision factors. The study concludes with a discussion of limitations, and implications for future research and counseling individuals with career indecision concerns.
ContributorsRohlfing, Jessica Elizabeth (Author) / Tracey, Terence J. G. (Thesis advisor) / Green, Samuel (Committee member) / Kinnier, Richard T. (Committee member) / Arizona State University (Publisher)
Created2013
152088-Thumbnail Image.png
Description
The alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts have been extensively studied due to the advantages they offer in terms enhanced material properties, while increasing sustainability by the reuse of industrial waste and byproducts and reducing the adverse impacts of OPC production. Fly ash and

The alkali activation of aluminosilicate materials as binder systems derived from industrial byproducts have been extensively studied due to the advantages they offer in terms enhanced material properties, while increasing sustainability by the reuse of industrial waste and byproducts and reducing the adverse impacts of OPC production. Fly ash and ground granulated blast furnace slag are commonly used for their content of soluble silica and aluminate species that can undergo dissolution, polymerization with the alkali, condensation on particle surfaces and solidification. The following topics are the focus of this thesis: (i) the use of microwave assisted thermal processing, in addition to heat-curing as a means of alkali activation and (ii) the relative effects of alkali cations (K or Na) in the activator (powder activators) on the mechanical properties and chemical structure of these systems. Unsuitable curing conditions instigate carbonation, which in turn lowers the pH of the system causing significant reductions in the rate of fly ash activation and mechanical strength development. This study explores the effects of sealing the samples during the curing process, which effectively traps the free water in the system, and allows for increased aluminosilicate activation. The use of microwave-curing in lieu of thermal-curing is also studied in order to reduce energy consumption and for its ability to provide fast volumetric heating. Potassium-based powder activators dry blended into the slag binder system is shown to be effective in obtaining very high compressive strengths under moist curing conditions (greater than 70 MPa), whereas sodium-based powder activation is much weaker (around 25 MPa). Compressive strength decreases when fly ash is introduced into the system. Isothermal calorimetry is used to evaluate the early hydration process, and to understand the reaction kinetics of the alkali powder activated systems. A qualitative evidence of the alkali-hydroxide concentration of the paste pore solution through the use of electrical conductivity measurements is also presented, with the results indicating the ion concentration of alkali is more prevalent in the pore solution of potassium-based systems. The use of advanced spectroscopic and thermal analysis techniques to distinguish the influence of studied parameters is also discussed.
ContributorsChowdhury, Ussala (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramanium D. (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2013
151891-Thumbnail Image.png
Description
This study explored several training variables that may contribute to counseling trainees' multicultural counseling self-efficacy and multicultural case conceptualization ability. Specifically, this study aimed to examine the cognitive processes that contribute to multicultural counseling competence (MCC) outcome variables. Clinical experience, multicultural knowledge, and multicultural awareness are assumed to provide the

This study explored several training variables that may contribute to counseling trainees' multicultural counseling self-efficacy and multicultural case conceptualization ability. Specifically, this study aimed to examine the cognitive processes that contribute to multicultural counseling competence (MCC) outcome variables. Clinical experience, multicultural knowledge, and multicultural awareness are assumed to provide the foundation for the development of these outcome variables. The role of how a counselor trainee utilizes this knowledge and awareness in working with diverse populations has not been explored. Diversity cognitive complexity (DCC) quantifies the process by which a counselor thinks about different elements of diversity in a multidimensional manner. The current study examined the role of DCC on the relationship between training variables of direct clinical experience with diverse populations, multicultural knowledge, and multicultural awareness and the two training outcomes (multicultural counseling self-efficacy and multicultural case conceptualization ability). A total of one hundred and sixty-one graduate trainees participated in the study. A series of hypotheses were tested to examine the impact of DCC on the relationship between MCC predictors (multicultural knowledge, multicultural awareness, and direct contact hours with diverse clinical populations) and two MCC outcomes: multicultural counseling self-efficacy and multicultural case conceptualization ability. Hierarchical regression analyses were utilized to test whether DCC mediated or moderated the relationship between the predictors and the outcome variables. Multicultural knowledge and clinical hours with diverse populations were significant predictors of multicultural counseling self-efficacy. Multicultural awareness was a significant predictor of multicultural case conceptualization ability. Diversity cognitive complexity was not a significantly related to any predictor or outcome variable, thus all hypotheses tested were rejected. The results of the current study support graduate programs emphasizing counselor trainees gaining multicultural knowledge and awareness as well as direct clinical experience with diverse clinical populations in an effort to foster MCC. Although diversity cognitive complexity was not significantly related to the predictor or outcome variables in this study, further research is warranted to determine the validity of the measure used to assess DCC. The findings in this study support the need for further research exploring training variables that contribute to multicultural counseling outcomes.
ContributorsRigali-Oiler, Marybeth (Author) / Robinson Kurpius, Sharon E (Thesis advisor) / Arciniega, Guillermo M (Committee member) / Nakagawa, Kathryn (Committee member) / Homer, Judith (Committee member) / Arizona State University (Publisher)
Created2013
151898-Thumbnail Image.png
Description
The thesis studies new methods to fabricate optoelectronic Ge1-ySny/Si(100) alloys and investigate their photoluminescence (PL) properties for possible applications in Si-based photonics including IR lasers. The work initially investigated the origin of the difference between the PL spectrum of bulk Ge, dominated by indirect gap emission, and the PL spectrum

The thesis studies new methods to fabricate optoelectronic Ge1-ySny/Si(100) alloys and investigate their photoluminescence (PL) properties for possible applications in Si-based photonics including IR lasers. The work initially investigated the origin of the difference between the PL spectrum of bulk Ge, dominated by indirect gap emission, and the PL spectrum of Ge-on-Si films, dominated by direct gap emission. It was found that the difference is due to the supression of self-absorption effects in Ge films, combined with a deviation from quasi-equilibrium conditions in the conduction band of undoped films. The latter is confirmed by a model suggesting that the deviation is caused by the shorter recombination lifetime in the films relative to bulk Ge. The knowledge acquired from this work was then utilized to study the PL properties of n-type Ge1-ySny/Si (y=0.004-0.04) samples grown via chemical vapor deposition of Ge2H6/SnD4/P(GeH3)3. It was found that the emission intensity (I) of these samples is at least 10x stronger than observed in un-doped counterparts and that the Idir/Iind ratio of direct over indirect gap emission increases for high-Sn contents due to the reduced gamma-L valley separation, as expected. Next the PL investigation was expanded to samples with y=0.05-0.09 grown via a new method using the more reactive Ge3H8 in place of Ge2H6. Optical quality, 1-um thick Ge1-ySny/Si(100) layers were produced using Ge3H10/SnD4 and found to exhibit strong, tunable PL near the threshold of the direct-indirect bandgap crossover. A byproduct of this study was the development of an enhanced process to produce Ge3H8, Ge4H10, and Ge5H12 analogs for application in ultra-low temperature deposition of Group-IV semiconductors. The thesis also studies synthesis routes of an entirely new class of semiconductor compounds and alloys described by Si5-2y(III-V)y (III=Al, V= As, P) comprising of specifically designed diamond-like structures based on a Si parent lattice incorporating isolated III-V units. The common theme of the two thesis topics is the development of new mono-crystalline materials on ubiquitous silicon platforms with the objective of enhancing the optoelectronic performance of Si and Ge semiconductors, potentially leading to the design of next generation optical devices including lasers, detectors and solar cells.
ContributorsGrzybowski, Gordon (Author) / Kouvetakis, John (Thesis advisor) / Chizmeshya, Andrew (Committee member) / Menéndez, Jose (Committee member) / Arizona State University (Publisher)
Created2013
151911-Thumbnail Image.png
Description
Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts,

Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts, (2) determine the effect of water quality parameters (e.g., pH), (3) conduct responsible engineering by ensuring detection methods were in place for novel materials, and (4) develop a conceptual framework for designing nitrate-specific photocatalysts. The key issues for implementing photocatalysis for nitrate drinking water treatment were efficient nitrate removal at neutral pH and by-product selectivity toward nitrogen gases, rather than by-products that pose a human health concern (e.g., nitrite). Photocatalytic nitrate reduction was found to follow a series of proton-coupled electron transfers. The nitrate reduction rate was limited by the electron-hole recombination rate, and the addition of an electron donor (e.g., formate) was necessary to reduce the recombination rate and achieve efficient nitrate removal. Nano-sized photocatalysts with high surface areas mitigated the negative effects of competing aqueous anions. The key water quality parameter impacting by-product selectivity was pH. For pH < 4, the by-product selectivity was mostly N-gas with some NH4+, but this shifted to NO2- above pH = 4, which suggests the need for proton localization to move beyond NO2-. Co-catalysts that form a Schottky barrier, allowing for localization of electrons, were best for nitrate reduction. Silver was optimal in heterogeneous systems because of its ability to improve nitrate reduction activity and N-gas by-product selectivity, and graphene was optimal in two-electrode systems because of its ability to shuttle electrons to the working electrode. "Environmentally responsible use of nanomaterials" is to ensure that detection methods are in place for the nanomaterials tested. While methods exist for the metals and metal oxides examined, there are currently none for carbon nanotubes (CNTs) and graphene. Acknowledging that risk assessment encompasses dose-response and exposure, new analytical methods were developed for extracting and detecting CNTs and graphene in complex organic environmental (e.g., urban air) and biological matrices (e.g. rat lungs).
ContributorsDoudrick, Kyle (Author) / Westerhoff, Paul (Thesis advisor) / Halden, Rolf (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2013
151920-Thumbnail Image.png
Description
This study examined the relationship that gender in interaction with interpersonal problem type has with outcome in psychotherapy. A sample of 200 individuals, who sought psychotherapy at a counselor training facility, completed the Outcome Questionnaire-45(OQ-45) and the reduced version of the Inventory of Interpersonal Problems (IIP-32). This study was aimed

This study examined the relationship that gender in interaction with interpersonal problem type has with outcome in psychotherapy. A sample of 200 individuals, who sought psychotherapy at a counselor training facility, completed the Outcome Questionnaire-45(OQ-45) and the reduced version of the Inventory of Interpersonal Problems (IIP-32). This study was aimed at examining whether gender (male and female), was related to treatment outcome, and whether this relationship was moderated by two interpersonal distress dimensions: dominance and affiliation. A hierarchical regression analyses was performed and indicated that gender did not predict psychotherapy treatment outcome, and neither dominance nor affiliation were moderators of the relationship between gender and outcome in psychotherapy.
ContributorsHoffmann, Nicole (Author) / Tracey, Terence (Thesis advisor) / Kinnier, Richard (Committee member) / Homer, Judith (Committee member) / Arizona State University (Publisher)
Created2013