Matching Items (35)
Filtering by

Clear all filters

150047-Thumbnail Image.png
Description
Amorphous oxide semiconductors are promising new materials for various optoelectronic applications. In this study, improved electrical and optical properties upon thermal and microwave processing of mixed-oxide semiconductors are reported. First, arsenic-doped silicon was used as a model system to understand susceptor-assisted microwave annealing. Mixed oxide semiconductor films of indium zinc

Amorphous oxide semiconductors are promising new materials for various optoelectronic applications. In this study, improved electrical and optical properties upon thermal and microwave processing of mixed-oxide semiconductors are reported. First, arsenic-doped silicon was used as a model system to understand susceptor-assisted microwave annealing. Mixed oxide semiconductor films of indium zinc oxide (IZO) and indium gallium zinc oxide (IGZO) were deposited by room-temperature RF sputtering on flexible polymer substrates. Thermal annealing in different environments - air, vacuum and oxygen was done. Electrical and optical characterization was carried out before and after annealing. The degree of reversal in the degradation in electrical properties of the thin films upon annealing in oxygen was assessed by subjecting samples to subsequent vacuum anneals. To further increase the conductivity of the IGZO films, Ag layers of various thicknesses were embedded between two IGZO layers. Optical performance of the multilayer structures was improved by susceptor-assisted microwave annealing and furnace-annealing in oxygen environment without compromising on their electrical conductivity. The post-processing of the films in different environments was used to develop an understanding of mechanisms of carrier generation, transport and optical absorption. This study establishes IGZO as a viable transparent conductor, which can be deposited at room-temperature and processed by thermal and microwave annealing to improve electrical and optical performance for applications in flexible electronics and optoelectronics.
ContributorsGadre, Mandar (Author) / Alford, Terry L. (Thesis advisor) / Schroder, Dieter (Committee member) / Krause, Stephen (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2011
150393-Thumbnail Image.png
Description
ABSTRACT The behavior of the fission products, as they are released from fission events during nuclear reaction, plays an important role in nuclear fuel performance. Fission product release can occur through grain boundary (GB) at low burnups; therefore, this study simulates the mass transport of fission gases in a 2-D

ABSTRACT The behavior of the fission products, as they are released from fission events during nuclear reaction, plays an important role in nuclear fuel performance. Fission product release can occur through grain boundary (GB) at low burnups; therefore, this study simulates the mass transport of fission gases in a 2-D GB network to look into the effects of GB characteristics on this phenomenon, with emphasis on conditions that can lead to percolation. A finite element model was created based on the microstructure of a depleted UO2 sample characterized by Electron Backscattering Diffraction (EBSD). The GBs were categorized into high (D2), low (D1) and bulk diffusivity (Dbulk) based on their misorientation angles and Coincident Site Lattice (CSL) types. The simulation was run using different diffusivity ratios (D2/Dbulk) ranging from 1 to 10^8. The model was set up in three ways: constant temperature case, temperature gradient effects and window methods that mimic the environments in a Light Water Reactor (LWR). In general, the formation of percolation paths was observed at a ratio higher than 10^4 in the measured GB network, which had a 68% fraction of high diffusivity GBs. The presence of temperature gradient created an uneven concentration distribution and decreased the overall mass flux. Finally, radial temperature and fission gas concentration profiles were obtained for a fuel pellet in operation using an approximate 1-D model. The 100 µm long microstructurally explicit model was used to simulate, to the scale of a real UO2 pellet, the mass transport at different radial positions, with boundary conditions obtained from the profiles. Stronger percolation effects were observed at the intermediate and periphery position of the pellet. The results also showed that highest mass flux happens at the edge of a pellet at steady state to accommodate for the sharp concentration drop.
ContributorsLim, Harn Chyi (Author) / Peralta, Pedro (Thesis advisor) / Dey, Sandwip (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
149810-Thumbnail Image.png
Description
This thesis discusses the use of low temperature microwave anneal as an alternative technique to recrystallize materials damaged or amorphized due to implantation techniques. The work focuses on the annealing of high-Z doped Si wafers that are incapable of attaining high temperatures required for recrystallizing the damaged implanted layers by

This thesis discusses the use of low temperature microwave anneal as an alternative technique to recrystallize materials damaged or amorphized due to implantation techniques. The work focuses on the annealing of high-Z doped Si wafers that are incapable of attaining high temperatures required for recrystallizing the damaged implanted layers by microwave absorption The increasing necessity for quicker and more efficient processing techniques motivates study of the use of a single frequency applicator microwave cavity along with a Fe2O3 infused SiC-alumina susceptor/applicator as an alternative post implantation process. Arsenic implanted Si samples of different dopant concentrations and implantation energies were studied pre and post microwave annealing. A set of as-implanted Si samples were also used to assess the effect of inactive dopants against presence of electrically active dopants on the recrystallization mechanisms. The extent of damage repair and Si recrystallization of the damage caused by arsenic and Si implantation of Si is determined by cross-section transmission electron microscopy and Raman spectroscopy. Dopant activation is evaluated for the As implanted Si by sheet resistance measurements. For the same, secondary ion mass spectroscopy analysis is used to compare the extent of diffusion that results from such microwave annealing with that experienced when using conventional rapid thermal annealing (RTA). Results show that compared to susceptor assisted microwave annealing, RTA caused undesired dopant diffusion. The SiC-alumina susceptor plays a predominant role in supplying heat to the Si substrate, and acts as an assistor that helps a high-Z dopant like arsenic to absorb the microwave energy using a microwave loss mechanism which is a combination of ionic and dipole losses. Comparisons of annealing of the samples were done with and without the use of the susceptor, and confirm the role played by the susceptor, since the samples donot recrystallize when the surface heating mechanism provided by the susceptor is not incorporated. Variable frequency microwave annealing was also performed over the as-implanted Si samples for durations and temperatures higher than the single frequency microwave anneal, but only partial recrystallization of the damaged layer was achieved.
ContributorsVemuri, Rajitha (Author) / Alford, Terry L. (Thesis advisor) / Theodore, David (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
151351-Thumbnail Image.png
Description
Dealloying induced stress corrosion cracking is particularly relevant in energy conversion systems (both nuclear and fossil fuel) as many failures in alloys such as austenitic stainless steel and nickel-based systems result directly from dealloying. This study provides evidence of the role of unstable dynamic fracture processes in dealloying induced stress-corrosion

Dealloying induced stress corrosion cracking is particularly relevant in energy conversion systems (both nuclear and fossil fuel) as many failures in alloys such as austenitic stainless steel and nickel-based systems result directly from dealloying. This study provides evidence of the role of unstable dynamic fracture processes in dealloying induced stress-corrosion cracking of face-centered cubic alloys. Corrosion of such alloys often results in the formation of a brittle nanoporous layer which we hypothesize serves to nucleate a crack that owing to dynamic effects penetrates into the un-dealloyed parent phase alloy. Thus, since there is essentially a purely mechanical component of cracking, stress corrosion crack propagation rates can be significantly larger than that predicted from electrochemical parameters. The main objective of this work is to examine and test this hypothesis under conditions relevant to stress corrosion cracking. Silver-gold alloys serve as a model system for this study since hydrogen effects can be neglected on a thermodynamic basis, which allows us to focus on a single cracking mechanism. In order to study various aspects of this problem, the dynamic fracture properties of monolithic nanoporous gold (NPG) were examined in air and under electrochemical conditions relevant to stress corrosion cracking. The detailed processes associated with the crack injection phenomenon were also examined by forming dealloyed nanoporous layers of prescribed properties on un-dealloyed parent phase structures and measuring crack penetration distances. Dynamic fracture in monolithic NPG and in crack injection experiments was examined using high-speed (106 frames s-1) digital photography. The tunable set of experimental parameters included the NPG length scale (20-40 nm), thickness of the dealloyed layer (10-3000 nm) and the electrochemical potential (0.5-1.5 V). The results of crack injection experiments were characterized using the dual-beam focused ion beam/scanning electron microscopy. Together these tools allow us to very accurately examine the detailed structure and composition of dealloyed grain boundaries and compare crack injection distances to the depth of dealloying. The results of this work should provide a basis for new mathematical modeling of dealloying induced stress corrosion cracking while providing a sound physical basis for the design of new alloys that may not be susceptible to this form of cracking. Additionally, the obtained results should be of broad interest to researchers interested in the fracture properties of nano-structured materials. The findings will open up new avenues of research apart from any implications the study may have for stress corrosion cracking.
ContributorsSun, Shaofeng (Author) / Sieradzki, Karl (Thesis advisor) / Jiang, Hanqing (Committee member) / Peralta, Pedro (Committee member) / Arizona State University (Publisher)
Created2012
152052-Thumbnail Image.png
Description
Microwave (MW), thermal, and ultraviolet (UV) annealing were used to explore the response of Ag structures on a Ge-Se chalcogenide glass (ChG) thin film as flexible radiation sensors, and Te-Ti chalcogenide thin films as a material for diffusion barriers in microelectronics devices and processing of metallized Cu. Flexible resistive radiation

Microwave (MW), thermal, and ultraviolet (UV) annealing were used to explore the response of Ag structures on a Ge-Se chalcogenide glass (ChG) thin film as flexible radiation sensors, and Te-Ti chalcogenide thin films as a material for diffusion barriers in microelectronics devices and processing of metallized Cu. Flexible resistive radiation sensors consisting of Ag electrodes on a Ge20Se80 ChG thin film and polyethylene naphthalate substrate were exposed to UV radiation. The sensors were mounted on PVC tubes of varying radii to induce bending strains and annealed under ambient conditions up to 150 oC. Initial sensor resistance was measured to be ~1012 Ω; after exposure to UV radiation, the resistance was ~104 Ω. Bending strain and low temperature annealing had no significant effect on the resistance of the sensors. Samples of Cu on Te-Ti thin films were annealed in vacuum for up to 30 minutes and were stable up to 500 oC as revealed using Rutherford backscattering spectrometry (RBS) and four-point-probe analysis. X-ray diffractometry (XRD) indicates Cu grain growth up to 500 oC and phase instability of the Te-Ti barrier at 600 oC. MW processing was performed in a 2.45-GHz microwave cavity on Cu/Te-Ti films for up to 30 seconds to induce oxide growth. Using a calibrated pyrometer above the sample, the temperature of the MW process was measured to be below a maximum of 186 oC. Four-point-probe analysis shows an increase in resistance with an increase in MW time. XRD indicates growth of CuO on the sample surface. RBS suggests oxidation throughout the Te-Ti film. Additional samples were exposed to 907 J/cm2 UV radiation in order to ensure other possible electromagnetically induced mechanisms were not active. There were no changes observed using XRD, RBS or four point probing.
ContributorsRoos, Benjamin, 1990- (Author) / Alford, Terry L. (Thesis advisor) / Theodore, David (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152042-Thumbnail Image.png
Description
Rapid processing and reduced end-of-range diffusion effects demonstrate that susceptor-assisted microwave annealing is an efficient processing alternative for electrically activating dopants and removing ion-implantation damage in ion-implanted semiconductors. Sheet resistance and Hall measurements provide evidence of electrical activation. Raman spectroscopy and ion channeling analysis monitor the extent of ion implantation

Rapid processing and reduced end-of-range diffusion effects demonstrate that susceptor-assisted microwave annealing is an efficient processing alternative for electrically activating dopants and removing ion-implantation damage in ion-implanted semiconductors. Sheet resistance and Hall measurements provide evidence of electrical activation. Raman spectroscopy and ion channeling analysis monitor the extent of ion implantation damage and recrystallization. The presence of damage and defects in ion implanted silicon, and the reduction of the defects as a result of annealing, is observed by Rutherford backscattering spectrometry, moreover, the boron implanted silicon is further investigated by cross-section transmission electron microscopy. When annealing B+ implanted silicon, the dissolution of small extended defects and growth of large extended defects result in reduced crystalline quality that hinders the electrical activation process. Compared to B+ implanted silicon, phosphorus implanted samples experience more effective activation and achieve better crystalline quality. Comparison of end-of-range dopants diffusion resulting from microwave annealing and rapid thermal annealing (RTA) is done using secondary ion mass spectroscopy. Results from microwave annealed P+ implanted samples show that almost no diffusion occurs during time periods required for complete dopant activation and silicon recrystallization. The relative contributions to heating of the sample, by a SiC susceptor, and by Si self-heating in the microwave anneal, were also investigated. At first 20s, the main contributor to the sample's temperature rise is Si self-heating by microwave absorption.
ContributorsZhao, Zhao (Author) / Alford, Terry Lynn (Thesis advisor) / Theodore, David (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
150645-Thumbnail Image.png
Description
This work focuses on simulation of electrical resistivity and optical behaviors of thin films, where an Ag or Au thin layer is embedded in zinc oxide. Enhanced conductivity and transparency were earlier achieved with multilayer structured transparent conducting oxide (TCO) sandwich layer with metal (TCO/metal/TCO). Sputtering pattern of metal layer

This work focuses on simulation of electrical resistivity and optical behaviors of thin films, where an Ag or Au thin layer is embedded in zinc oxide. Enhanced conductivity and transparency were earlier achieved with multilayer structured transparent conducting oxide (TCO) sandwich layer with metal (TCO/metal/TCO). Sputtering pattern of metal layer is simulated to obtain the morphology, covered area fraction, and the percolation strength. The resistivity as a function of the metal layer thickness fits the modeled trend of covered area fraction beyond the percolation threshold. This result not only presents the robustness of the simulation, but also demonstrates the influence of metal morphology in multilayer structure. Effective medium coefficients are defined from the coverage and percolation strength to obtain simulated optical transmittance which matches experimental observation. The coherence of resistivity and optical transmittance validates the simulation of the sputtered pattern and the incorporation of percolation theory in the model.
ContributorsFang, Chia-Ling (Author) / Alford, Terry L. (Thesis advisor) / Crozier, Peter (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2012
136339-Thumbnail Image.png
Description
The following is a report that will evaluate the microstructure of the nickel-based superalloy Hastelloy X and its relationship to mechanical properties in different load conditions. Hastelloy X is of interest to the company AORA because its strength and oxidation resistance at high temperatures is directly applicable to their needs

The following is a report that will evaluate the microstructure of the nickel-based superalloy Hastelloy X and its relationship to mechanical properties in different load conditions. Hastelloy X is of interest to the company AORA because its strength and oxidation resistance at high temperatures is directly applicable to their needs in a hybrid concentrated solar module. The literature review shows that the microstructure will produce different carbides at various temperatures, which can be beneficial to the strength of the alloy. These precipitates are found along the grain boundaries and act as pins that limit dislocation flow, as well as grain boundary sliding, and improve the rupture strength of the material. Over time, harmful precipitates form which counteract the strengthening effect of the carbides and reduce rupture strength, leading to failure. A combination of indentation and microstructure mapping was used in an effort to link local mechanical behavior to microstructure variability. Electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS) were initially used as a means to characterize the microstructure prior to testing. Then, a series of room temperature Vickers hardness tests at 50 and 500 gram-force were used to evaluate the variation in the local response as a function of indentation size. The room temperature study concluded that both the hardness and standard deviation increased at lower loads, which is consistent with the grain size distribution seen in the microstructure scan. The material was then subjected to high temperature spherical indentation. Load-displacement curves were essential in evaluating the decrease in strength of the material with increasing temperature. Through linear regression of the unloading portion of the curve, the plastic deformation was determined and compared at different temperatures as a qualitative method to evaluate local strength.
ContributorsCelaya, Andrew Jose (Author) / Peralta, Pedro (Thesis director) / Solanki, Kiran (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
149554-Thumbnail Image.png
Description
The object of this study is to investigate and improve the performance/stability of the flexible thin film transistors (TFTs) and to study the properties of metal oxide transparent conductive oxides for wide range of flexible electronic applications. Initially, a study has been done to improve the conductivity of ITO (indium

The object of this study is to investigate and improve the performance/stability of the flexible thin film transistors (TFTs) and to study the properties of metal oxide transparent conductive oxides for wide range of flexible electronic applications. Initially, a study has been done to improve the conductivity of ITO (indium tin oxide) films on PEN (polyethylene naphthalate) by inserting a thin layer of silver layer between two ITO layers. The multilayer with an optimum Ag mid-layer thickness, of 8 nm, exhibited excellent photopic average transmittance (~ 88 %), resistivity (~ 2.7 × 10-5 µ-cm.) and has the best Hackee figure of merit (41.0 × 10-3 Ω-1). The electrical conduction is dominated by two different scattering mechanisms depending on the thickness of the Ag mid-layer. Optical transmission is explained by scattering losses and absorption of light due to inter-band electronic transitions. A systematic study was carried out to improve the performance/stability of the TFTs on PEN. The performance and stability of a-Si:H and a-IZO (amorphous indium zinc oxide) TFTs were improved by performing a systematic low temperature (150 °C) anneals for extended times. For 96 hours annealed a-Si:H TFTs, the sub-threshold slope and off-current were reduced by a factor ~ 3 and by 2 orders of magnitude, respectively when compared to unannealed a-Si:H TFTs. For a-IZO TFTs, 48 hours of annealing is found to be the optimum time for the best performance and elevated temperature stability. These devices exhibit saturation mobility varying between 4.5-5.5 cm2/V-s, ION/IOFF ratio was 106 and a sub-threshold swing variation of 1-1.25 V/decade. An in-depth study on the mechanical and electromechanical stress response on the electrical properties of the a-IZO TFTs has also been investigated. Finally, the a-Si:H TFTs were exposed to gamma radiation to examine their radiation resistance. The interface trap density (Nit) values range from 5 to 6 × 1011 cm-2 for only electrical stress bias case. For "irradiation only" case, the Nit value increases from 5×1011 cm-2 to 2×1012 cm-2 after 3 hours of gamma radiation exposure, whereas it increases from 5×1011 cm-2 to 4×1012 cm-2 for "combined gamma and electrical stress".
ContributorsIndluru, Anil (Author) / Alford, Terry L. (Thesis advisor) / Schroder, Dieter (Committee member) / Krause, Stephen (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2011
149459-Thumbnail Image.png
Description
Miedema's plot is used to select the Cu/metal barrier for Cu metallization.The Cu/metal barrier system selected should have positive heat of formation (Hf) so that there is no intermixing between the two layers. In this case, Ru is chosen as a potential candidate, and then the barrier properties of sputtered

Miedema's plot is used to select the Cu/metal barrier for Cu metallization.The Cu/metal barrier system selected should have positive heat of formation (Hf) so that there is no intermixing between the two layers. In this case, Ru is chosen as a potential candidate, and then the barrier properties of sputtered Cu/Ru thin films on thermally grown SiO2 substrates are investigated by Rutherford backscattering spectrometry (RBS), X-ray diffractometry (XRD), and electrical resistivity measurement. The Cu/Ru/SiO2 samples are analyzed prior to and after vacuum annealing at various temperatures of 400, 500, and 600 oC and at different interval of times of 0.5, 1 and 2 hrs for each temperature. Backscattering analysis indicate that both the copper and ruthenium thin films are thermally stable at high temperature of 600 oC, without any interdiffusion and chemical reaction between Cu and Ru thin films. No new phase formation is observed in any of the Cu/Ru/SiO2 samples. The XRD data indicate no new phase formation in any of the annealed Cu/Ru/SiO2 samples and confirmed excellent thermal stability of Cu on Ru layer. The electrical resistivity measurement indicated that the electrical resistivity value of the copper thin films annealed at 400, 500, and 600 oC is essentially constant and the copper films are thermally stable on Ru, no reaction occurs between copper films and Ru the layer. Cu/Ru/SiO2 multilayered thin film samples have been shown to possess good mechanical strength and adhesion between the Cu and Ru layers compared to the Cu/SiO2 thin film samples. The strength evaluation is carried out under static loading conditions such as nanoindentation testing. In this study, evaluation and comparison is donebased on the dynamic deformation behavior of Cu/Ru/SiO2 and Cu/SiO2 samples under scratch loading condition as a measure of tribological properties. Finally, the deformation behavior under static and dynamic loading conditions is understood using the scanning electron microscope (SEM) and the focused ionbeam imaging microscope (FIB) for topographical and cross-sectional imaging respectively.
ContributorsVenkatesh, Srilakshmi Hosadurga (Author) / Alford, Terry L. (Thesis advisor) / Krause, Stephen (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2010