Matching Items (7)
Filtering by

Clear all filters

151911-Thumbnail Image.png
Description
Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts,

Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts, (2) determine the effect of water quality parameters (e.g., pH), (3) conduct responsible engineering by ensuring detection methods were in place for novel materials, and (4) develop a conceptual framework for designing nitrate-specific photocatalysts. The key issues for implementing photocatalysis for nitrate drinking water treatment were efficient nitrate removal at neutral pH and by-product selectivity toward nitrogen gases, rather than by-products that pose a human health concern (e.g., nitrite). Photocatalytic nitrate reduction was found to follow a series of proton-coupled electron transfers. The nitrate reduction rate was limited by the electron-hole recombination rate, and the addition of an electron donor (e.g., formate) was necessary to reduce the recombination rate and achieve efficient nitrate removal. Nano-sized photocatalysts with high surface areas mitigated the negative effects of competing aqueous anions. The key water quality parameter impacting by-product selectivity was pH. For pH < 4, the by-product selectivity was mostly N-gas with some NH4+, but this shifted to NO2- above pH = 4, which suggests the need for proton localization to move beyond NO2-. Co-catalysts that form a Schottky barrier, allowing for localization of electrons, were best for nitrate reduction. Silver was optimal in heterogeneous systems because of its ability to improve nitrate reduction activity and N-gas by-product selectivity, and graphene was optimal in two-electrode systems because of its ability to shuttle electrons to the working electrode. "Environmentally responsible use of nanomaterials" is to ensure that detection methods are in place for the nanomaterials tested. While methods exist for the metals and metal oxides examined, there are currently none for carbon nanotubes (CNTs) and graphene. Acknowledging that risk assessment encompasses dose-response and exposure, new analytical methods were developed for extracting and detecting CNTs and graphene in complex organic environmental (e.g., urban air) and biological matrices (e.g. rat lungs).
ContributorsDoudrick, Kyle (Author) / Westerhoff, Paul (Thesis advisor) / Halden, Rolf (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2013
161962-Thumbnail Image.png
Description
Atmospheric water extraction (AWE) is an emerging technology to tackle water resource shortage challenges. One such approach to provide fresh water utilizes stimuli-responsive hydrogel-based desiccants to capture the moisture from the air and release it into the liquid form. Typical gel desiccants are composed of a hygroscopic agent for capturing

Atmospheric water extraction (AWE) is an emerging technology to tackle water resource shortage challenges. One such approach to provide fresh water utilizes stimuli-responsive hydrogel-based desiccants to capture the moisture from the air and release it into the liquid form. Typical gel desiccants are composed of a hygroscopic agent for capturing and a hydrophilic gel matrix for storage. The desorption process can be completed by elevating the temperature above the upper or lower critical solution temperature point to initiate the volume phase transition of either thermo-responsive or photothermal types. This thesis focuses on investigating the structural effect of hydrogels on moisture uptake. Firstly, the main matrix of gel desiccant, poly(N-isopropylacrylamide) hydrogel, was optimized via tuning synthesis temperature and initial monomer concentration. Secondly, a series of hydrogel-based desiccants consisting of a hygroscopic material, vinyl imidazole, and optimized poly(N-isopropylacrylamide) gel matrix were synthesized with different network structures. The moisture uptake result showed that the gel desiccant with an interpenetrating polymeric network (IPN) resulted in the best-performing moisture capturing. The gel desiccant with the best performance will be used as a primary structural unit to evaluate the feasibility of developing a light-responsive gel desiccant to materialize light-trigger moisture desorption for AWE technology in the future.
ContributorsZhao, Xingbang (Author) / Dai, Lenore (Thesis advisor) / Westerhoff, Paul (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2021
187724-Thumbnail Image.png
Description
Electrochemical technologies emerge as a feasible solution to monitor and treat pollutants. Although electrochemical technologies have garnered widespread attention, their commercial applications are still constrained by the use of expensive electrocatalysts, and the bulky and rigid plate design of electrodes that restricts electrochemical reactor design to systems with poor electrode

Electrochemical technologies emerge as a feasible solution to monitor and treat pollutants. Although electrochemical technologies have garnered widespread attention, their commercial applications are still constrained by the use of expensive electrocatalysts, and the bulky and rigid plate design of electrodes that restricts electrochemical reactor design to systems with poor electrode surface/ volume treated ratios. By making electrodes flexible, more compact designs that maximize electrode surface per volume treated might become a reality. This dissertation encompasses the successful fabrication of flexible nanocomposite electrodes for electrocatalysis and electroanalysis applications.First, nano boron-doped diamond electrodes (BDD) were prepared as an inexpensive alternative to commercial boron-doped diamond electrodes. Comparative detailed surface and electrochemical characterization was conducted. Empirical study showed that replacing commercial BDD electrodes with nano-BDD electrodes can result in a cost reduction of roughly 1000x while maintaining the same electrochemical performance. Next, self-standing electrodes were fabricated through the electropolymerization of conducing polymer, polypyrrole. Surface characterizations, such as SEM, FTIR and XPS proved the successful fabrication of these self-standing electrodes. High mechanical stability and bending flexibility demonstrated the ability to use these electrodes in different designs, such as roll-to-roll membranes. Electrochemical nitrite reduction was employed to demonstrate the viability of using self-standing nanocomposite electrodes for electrocatalytic applications reducing hazardous nitrogen oxyanions (i.e., nitrite) towards innocuous species such as nitrogen gas. A high faradaic efficiency of 78% was achieved, with high selectivity of 91% towards nitrogen gas. To further enhance the conductivity and charge transfer properties of self-standing polypyrrole electrodes, three different nanoparticles, including copper (Cu), gold (Au), and platinum (Pt), were incorporated in the polypyrrole matrix. Effect of nanoparticle wt% and interaction between metal nanoparticles and polypyrrole matrix was investigated for electroanalytical applications, specifically dopamine sensing. Flexible nanocomposite electrodes showed outstanding performance as electrochemical sensors with PPy-Cu 120s exhibiting a low limit of detection (LOD) of 1.19 µM and PPy-Au 120s exhibiting a high linear range of 5 µM - 300 µM. This dissertation outlines a method of fabricating self-standing electrodes and provides a pathway of using self-standing electrodes based on polypyrrole and polypyrrole-metal nanocomposites for various applications in wastewater treatment and electroanalytical sensing.
ContributorsBansal, Rishabh (Author) / Garcia-Segura, Sergio (Thesis advisor) / Westerhoff, Paul (Committee member) / Perreault, Francois (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2023
156705-Thumbnail Image.png
Description
Flame retardants (FRs) are applied to variety of consumer products such as textiles and polymers for fire prevention and fire safety. Substantial research is ongoing to replace traditional FRs with alternative materials that are less toxic, present higher flame retardancy and result in lower overall exposure as there are potential

Flame retardants (FRs) are applied to variety of consumer products such as textiles and polymers for fire prevention and fire safety. Substantial research is ongoing to replace traditional FRs with alternative materials that are less toxic, present higher flame retardancy and result in lower overall exposure as there are potential health concerns in case of exposure to popular FRs. Carbonaceous nanomaterials (CNMs) such as carbon nanotubes (CNTs) and graphene oxide (GO) have been studied and applied to polymer composites and electronics extensively due to their remarkable properties. Hence CNMs are considered as potential alternative materials that present high flame retardancy. In this research, different kinds of CNMs coatings on polyester fabric are produced and evaluated for their use as flame retardants. To monitor the mass loading of CNMs coated on the fabric, a two-step analytical method for quantifying CNMs embedded in polymer composites was developed. This method consisted of polymer dissolution process using organic solvents followed by subsequent programmed thermal analysis (PTA). This quantification technique was applicable to CNTs with and without high metal impurities in a broad range of polymers. Various types of CNMs were coated on polyester fabric and the efficacy of coatings as flame retardant was evaluated. The oxygen content of CNMs emerged as a critical parameter impacting flame retardancy with higher oxygen content resulting in less FR efficacy. The most performant nanomaterials, multi-walled carbon nanotubes (MWCNTs) and amine functionalized multi-walled carbon nantoubes (NH2-MWCNT) showed similar FR properties to current flame retardants with low mass loading (0.18 g/m2) and hence are promising alternatives that warrant further investigation. Chemical/physical modification of MWCNTs was conducted to produce well-dispersed MWCNT solutions without involving oxygen for uniform FR coating. The MWCNTs coating was studied to evaluate the durability of the coating and the impact on the efficacy during use phase by conducting mechanical abrasion and washing test. Approximately 50% and 40% of MWCNTs were released from 1 set of mechanical abrasion and washing test respectively. The losses during simulated usage impacted the flame retardancy negatively.
ContributorsNosaka, Takayuki (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Committee member) / Wang, Qing Hua (Committee member) / Arizona State University (Publisher)
Created2018
154278-Thumbnail Image.png
Description
Ion exchange sorbents embedded with metal oxide nanoparticles can have high affinity and high capacity to simultaneously remove multiple oxygenated anion contaminants from drinking water. This research pursued answering the question, “Can synthesis methods of nano-composite sorbents be improved to increase sustainability and feasibility to remove hexavalent chromium and arsenic

Ion exchange sorbents embedded with metal oxide nanoparticles can have high affinity and high capacity to simultaneously remove multiple oxygenated anion contaminants from drinking water. This research pursued answering the question, “Can synthesis methods of nano-composite sorbents be improved to increase sustainability and feasibility to remove hexavalent chromium and arsenic simultaneously from groundwater compared to existing sorbents?” Preliminary nano-composite sorbents outperformed existing sorbents in equilibrium tests, but struggled in packed bed applications and at low influent concentrations. The synthesis process was then tailored for weak base anion exchange (WBAX) while comparing titanium dioxide against iron hydroxide nanoparticles (Ti-WBAX and Fe-WBAX, respectively). Increasing metal precursor concentration increased the metal content of the created sorbents, but pollutant removal performance and usable surface area declined due to pore blockage and nanoparticle agglomeration. An acid-post rinse was required for Fe-WBAX to restore chromium removal capacity. Anticipatory life cycle assessment identified critical design constraints to improve environmental and human health performance like minimizing oven heating time, improving pollutant removal capacity, and efficiently reusing metal precursor solution. The life cycle environmental impact of Ti-WBAX was lower than Fe-WBAX as well as a mixed bed of WBAX and granular ferric hydroxide for all studied categories. A separate life cycle assessment found the total number of cancer and non-cancer cases prevented by drinking safer water outweighed those created by manufacture and use of water treatment materials and energy. However, treatment relocated who bore the health risk, concentrated it in a sub-population, and changed the primary manifestation from cancer to non-cancer disease. This tradeoff was partially mitigated by avoiding use of pH control chemicals. When properly synthesized, Fe-WBAX and Ti-WBAX sorbents maintained chromium removal capacity while significantly increasing arsenic removal capacity compared to the parent resin. The hybrid sorbent performance was demonstrated in packed beds using a challenging water matrix and low pollutant influent conditions. Breakthrough curves hint that the hexavalent chromium is removed by anion exchange and the arsenic is removed by metal oxide sorption. Overall, the hybrid nano-sorbent synthesis methods increased sustainability, improved sorbent characteristics, and increased simultaneous removal of chromium and arsenic for drinking water.
ContributorsGifford, James McKay (Author) / Westerhoff, Paul (Thesis advisor) / Hristovski, Kiril (Thesis advisor) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2016
152702-Thumbnail Image.png
Description
The National Research Council 2011 report lists quantifying the extent of de facto (or unplanned) potable reuse in the U.S. as the top research need associated with assessing the potential for expanding the nations water supply through reuse of municipal wastewater. Efforts to identify the significance and potential health impacts

The National Research Council 2011 report lists quantifying the extent of de facto (or unplanned) potable reuse in the U.S. as the top research need associated with assessing the potential for expanding the nations water supply through reuse of municipal wastewater. Efforts to identify the significance and potential health impacts of de facto water reuse are impeded by out dated information regarding the contribution of municipal wastewater effluent to potable water supplies. This project aims to answer this research need. The overall goal of the this project is to quantify the extent of de facto reuse by developing a model that estimates the amount of wastewater effluent that is present within drinking water treatment plants; and to use the model in conjunction with a survey to help assess public perceptions. The four-step approach to accomplish this goal includes: (1) creating a GIS-based model coupled with Python programming; (2) validating the model with field studies by analyzing sucralose as a wastewater tracer; (3) estimating the percentage of wastewater in raw drinking water sources under varying streamflow conditions; (4) and assessing through a social survey the perceptions of the general public relating to acceptance and occurrence of de facto reuse. The resulting De Facto Reuse in our Nations Consumable Supply (DRINCS) Model, estimates that treated municipal wastewater is present at nearly 50% of drinking water treatment plant intake sites serving greater than 10,000 people (N=2,056). Contrary to the high frequency of occurrence, the magnitude of occurrence is relatively low with 50% of impacted intakes yielding less than 1% de facto reuse under average streamflow conditions. Model estimates increase under low flow conditions (modeled by Q95), in several cases treated wastewater makes up 100% of the water supply. De facto reuse occurs at levels that surpass what is publically perceived in the three cities of Atlanta, GA, Philadelphia, PA, and Phoenix, AZ. Respondents with knowledge of de facto reuse occurrence are 10 times more likely to have a high acceptance (greater than 75%) of treated wastewater at their home tap.
ContributorsRice, Jacelyn (Author) / Westerhoff, Paul (Thesis advisor) / Abbaszadegan, Morteza (Committee member) / Vivoni, Enrique (Committee member) / Wutich, Amber (Committee member) / Arizona State University (Publisher)
Created2014
155778-Thumbnail Image.png
Description
Contamination of drinking water supplies from oxo-anion pollutants necessitates treatment prior to potable use. This dissertation aims to inform and improve light delivery (emission spectra, radiant intensity, reactor configuration) in order to enhance the photocatalytic reduction of hexavalent chromium (Cr(VI)) and nitrate, two common oxo-anions in drinking water, and photocatalytic

Contamination of drinking water supplies from oxo-anion pollutants necessitates treatment prior to potable use. This dissertation aims to inform and improve light delivery (emission spectra, radiant intensity, reactor configuration) in order to enhance the photocatalytic reduction of hexavalent chromium (Cr(VI)) and nitrate, two common oxo-anions in drinking water, and photocatalytic oxidation of two model organic pollutants (methylene blue, (MB) and para-chlorobenzoic acid (pCBA)). By varying the photon fluence dose, two metrics (contaminant quantum yield (Φ), and electrical energy per order (EEO)) were used to assess photocatalytic reactor performance. A detailed literature review and experimental results demonstrated how different irradiance sources with variable intensity and emission spectra synergistically enhanced contaminant removal by a coupled photolytic/photocatalytic reaction mechanism. Cr(VI) was photocatalytically reduced on TiO2 and formed Cr(OH)3(s) in a large-scale slurry reactor, but Cr(III) was then photolyzed and reformed Cr(VI). UV light also led to photo-aggregation of TiO2 which improved its recovery by the ceramic membrane within the reactor. For nitrate reduction, light source emission spectra and fluence dose delineate the preferred pathways as intermediates were reduced via wavelength-dependent mechanisms. HONO was identified as a key nitrate reduction intermediate, which was reduced photocatalytically (UV wavelengths) and/or readily photolyzed at 365nm, to yield nitrogen gases. Photocatalytic nitrate reduction efficiency was higher for discrete wavelength irradiation than polychromatic irradiation. Light delivery through aqueous media to the catalyst surface limits efficiency of slurry-based photocatalysts because absorption and scattering of light in nanomaterial slurries decreases effective photon transmittance and minimizes photolytic reactions. The use of optical fibers coupled to light emitting diodes (OF-LED) with immobilized catalyst demonstrated higher performance compared to slurry systems. OF-LED increased Φ for MB degradation by increasing direct photon delivery to the photocatalyst. Design of OF-LED reactors using bundled optical fibers demonstrated photocatalytic pCBA removal with high Φ and reduced EEO due to increased surface area and catalytic sites compared to single OF/LED couples. This work advances light delivery as well as the suspension and attachment of nanoparticles in photocatalytic water treatment for selective transformation of oxo-anions and organic compounds to innocuous species.
ContributorsTugaoen, Heather O'Neal (Author) / Westerhoff, Paul (Thesis advisor) / Hristovski, Kiril (Thesis advisor) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2017