Matching Items (15)
Filtering by

Clear all filters

149883-Thumbnail Image.png
Description
The challenging search for clean, reliable and environmentally friendly energy sources has fueled increased research in thermoelectric materials, which are capable of recovering waste heat. Among the state-of-the-art thermoelectric materials β-Zn4Sb3 is outstanding because of its ultra-low glass-like thermal conductivity. Attempts to explore ternary phases in the Zn-Sb-In system resulted

The challenging search for clean, reliable and environmentally friendly energy sources has fueled increased research in thermoelectric materials, which are capable of recovering waste heat. Among the state-of-the-art thermoelectric materials β-Zn4Sb3 is outstanding because of its ultra-low glass-like thermal conductivity. Attempts to explore ternary phases in the Zn-Sb-In system resulted in the discovery of the new intermetallic compounds, stable Zn5Sb4In2-δ (δ=0.15) and metastable Zn9Sb6In2. Millimeter-sized crystals were grown from molten metal fluxes, where indium metal was employed as a reactive flux medium.Zn5Sb4In2-δ and Zn9Sb6In2 crystallize in new structure types featuring complex framework and the presence of structural disorder (defects and split atomic positions). The structure and phase relations between ternary Zn5Sb4In2-δ, Zn9Sb6In2 and binary Zn4Sb3 are discussed. To establish and understand structure-property relationships, thermoelectric properties measurements were carried out. The measurements suggested that Zn5Sb4In2-δ and Zn9Sb6In2 are narrow band gap semiconductors, similar to β-Zn4Sb3. Also, the peculiar low thermal conductivity of Zn4Sb3 (1 W/mK) is preserved. In the investigated temperature range 10 to 350 K Zn5Sb4In2-δ displays higher thermoelectric figure of merits than Zn4Sb3, indicating a potential significance in thermoelectric applications. Finally, the glass-like thermal conductivities of binary and ternary antimonides with complex structures are compared and the mechanism behind their low thermal conductivities is briefly discussed.
ContributorsWu, Yang (Author) / Häussermann, Ulrich (Thesis advisor) / Seo, Dong (Committee member) / Petuskey, William T (Committee member) / Newman, Nathan (Committee member) / Arizona State University (Publisher)
Created2011
152319-Thumbnail Image.png
Description
In this research, our goal was to fabricate Josephson junctions that can be stably processed at 300°C or higher. With the purpose of integrating Josephson junction fabrication with the current semiconductor circuit fabrication process, back-end process temperatures (>350 °C) will be a key for producing large scale junction circuits reliably,

In this research, our goal was to fabricate Josephson junctions that can be stably processed at 300°C or higher. With the purpose of integrating Josephson junction fabrication with the current semiconductor circuit fabrication process, back-end process temperatures (>350 °C) will be a key for producing large scale junction circuits reliably, which requires the junctions to be more thermally stable than current Nb/Al-AlOx/Nb junctions. Based on thermodynamics, Hf was chosen to produce thermally stable Nb/Hf-HfOx/Nb superconductor tunnel Josephson junctions that can be grown or processed at elevated temperatures. Also elevated synthesis temperatures improve the structural and electrical properties of Nb electrode layers that could potentially improve junction device performance. The refractory nature of Hf, HfO2 and Nb allow for the formation of flat, abrupt and thermally-stable interfaces. But the current Al-based barrier will have problems when using with high-temperature grown and high-quality Nb. So our work is aimed at using Nb grown at elevated temperatures to fabricate thermally stable Josephson tunnel junctions. As a junction barrier metal, Hf was studied and compared with the traditional Al-barrier material. We have proved that Hf-HfOx is a good barrier candidate for high-temperature synthesized Josephson junction. Hf deposited at 500 °C on Nb forms flat and chemically abrupt interfaces. Nb/Hf-HfOx/Nb Josephson junctions were synthesized, fabricated and characterized with different oxidizing conditions. The results of materials characterization and junction electrical measurements are reported and analyzed. We have improved the annealing stability of Nb junctions and also used high-quality Nb grown at 500 °C as the bottom electrode successfully. Adding a buffer layer or multiple oxidation steps improves the annealing stability of Josephson junctions. We also have attempted to use the Atomic Layer Deposition (ALD) method for the growth of Hf oxide as the junction barrier and got tunneling results.
ContributorsHuang, Mengchu, 1987- (Author) / Newman, Nathan (Thesis advisor) / Rowell, John M. (Committee member) / Singh, Rakesh K. (Committee member) / Chamberlin, Ralph (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2013
151496-Thumbnail Image.png
Description
The mechanism of loss in high performance microwave dielectrics with complex perovskite structure, including Ba(Zn1/3Ta2/3)O3, Ba(Cd1/3Ta2/3)O3, ZrTiO4-ZnNb2O6, Ba(Zn1/3Nb2/3)O3, and BaTi4O9-BaZn2Ti4O11, has been investigated. We studied materials synthesized in our own lab and from commercial vendors. Then the measured loss tangent was correlated to the optical, structural, and electrical properties of

The mechanism of loss in high performance microwave dielectrics with complex perovskite structure, including Ba(Zn1/3Ta2/3)O3, Ba(Cd1/3Ta2/3)O3, ZrTiO4-ZnNb2O6, Ba(Zn1/3Nb2/3)O3, and BaTi4O9-BaZn2Ti4O11, has been investigated. We studied materials synthesized in our own lab and from commercial vendors. Then the measured loss tangent was correlated to the optical, structural, and electrical properties of the material. To accurately and quantitatively determine the microwave loss and Electron Paramagnetic Resonance (EPR) spectra as a function of temperature and magnetic field, we developed parallel plate resonator (PPR) and dielectric resonator (DR) techniques. Our studies found a marked increase in the loss at low temperatures is found in materials containing transition metal with unpaired d-electrons as a result of resonant spin excitations in isolated atoms (light doping) or exchange coupled clusters (moderate to high doping) ; a mechanism that differs from the usual suspects. The loss tangent can be drastically reduced by applying static magnetic fields. Our measurements also show that this mechanism significantly contributes to room temperature loss, but does not dominate. In order to study the electronic structure of these materials, we grew single crystal thin film dielectrics for spectroscopic studies, including angular resolved photoemission spectroscopy (ARPES) experiment. We have synthesized stoichiometric Ba(Cd1/3Ta2/3)O3 [BCT] (100) dielectric thin films on MgO (100) substrates using Pulsed Laser Deposition. Over 99% of the BCT film was found to be epitaxial when grown with an elevated substrate temperature of 635 C, an enhanced oxygen pressures of 53 Pa and a Cd-enriched BCT target with a 1 mol BCT: 1.5 mol CdO composition. Analysis of ultra violet optical absorption results indicate that BCT has a bandgap of 4.9 eV.
ContributorsLiu, Lingtao (Author) / Newman, Nathan (Thesis advisor) / Marzke, Robert (Committee member) / Chamberlin, Ralph (Committee member) / Arizona State University (Publisher)
Created2013
152081-Thumbnail Image.png
Description
I studied the properties of novel Co2FeAl0.5Si0.5 (CFAS), ZnGeAs2, and FeS2 (pyrite) thin films for microelectronic applications ranging from spintronic to photovoltaic. CFAS is a half metal with theoretical spin polarization of 100%. I investigated its potential as a spin injector, for spintronic applications, by studying the critical steps involved

I studied the properties of novel Co2FeAl0.5Si0.5 (CFAS), ZnGeAs2, and FeS2 (pyrite) thin films for microelectronic applications ranging from spintronic to photovoltaic. CFAS is a half metal with theoretical spin polarization of 100%. I investigated its potential as a spin injector, for spintronic applications, by studying the critical steps involved in the injection of spin polarized electron populations from tunnel junctions containing CFAS electrodes. Epitaxial CFAS thin films with L21 structure and saturation magnetizations of over 1200 emu/cm3 were produced by optimization of the sputtering growth conditions. Point contact Andreev reflection measurements show that the spin polarization at the CFAS electrode surface exceeds 70%. Analyses of the electrical properties of tunnel junctions with a superconducting Pb counter-electrode indicate that transport through native Al oxide barriers is mostly from direct tunneling, while that through the native CFAS oxide barriers is not. ZnGeAs2 is a semiconductor comprised of only inexpensive and earth-abundant elements. The electronic structure and defect properties are similar in many ways to GaAs. Thus, in theory, efficient solar cells could be made with ZnGeAs2 if similar quality material to that of GaAs could be produced. To understand the thermochemistry and determine the rate limiting steps of ZnGeAs2 thin-film synthesis, the (a) thermal decomposition rate and (b) elemental composition and deposition rate of films were measured. It is concluded that the ZnGeAs2 thin film synthesis is a metastable process with an activation energy of 1.08±0.05 eV for the kinetically-limited decomposition rate and an evaporation coefficient of ~10-3. The thermochemical analysis presented here can be used to predict optimal conditions of ZnGeAs2 physical vapor deposition and thermal processing. Pyrite (FeS2) is another semiconductor that has tremendous potential for use in photovoltaic applications if high quality materials could be made. Here, I present the layer-by-layer growth of single-phase pyrite thin-films on heated substrates using sequential evaporation of Fe under high-vacuum followed by sulfidation at S pressures between 1 mTorr and 1 Torr. High-resolution transmission electron microscopy reveals high-quality, defect-free pyrite grains were produces by this method. It is demonstrated that epitaxial pyrite layer was produced on natural pyrite substrates with this method.
ContributorsVahidi, Mahmoud (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry (Committee member) / Singh, Rakesh (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2013
151032-Thumbnail Image.png
Description
This work is an investigation into the information provided by the concurrent use of in situ reflection high energy electron diffraction (RHEED) and reflection electron energy loss spectroscopy (REELS). The two analytical methods were employed during growth of metal, semiconductor and superconductor thin films by molecular beam epitaxy (MBE). Surface

This work is an investigation into the information provided by the concurrent use of in situ reflection high energy electron diffraction (RHEED) and reflection electron energy loss spectroscopy (REELS). The two analytical methods were employed during growth of metal, semiconductor and superconductor thin films by molecular beam epitaxy (MBE). Surface sensitivity of the REELS spectrometer was found to be less than 1 nm for 20 KeV electrons incident at a 2 degree angle to an atomically flat film surface, agreeing with the standard electron escape depth data when adjusted incident angle. Film surface topography was found to strongly influence the REELS spectra and this was correlated with in situ RHEED patterns and ex situ analysis by comparison with atomic force microscopy (AFM). It was observed in all the experimental results that from very smooth films the plasmon peak maxima did not fall at the predicted surface plasmon values but at slightly higher energies, even for nearly atomically flat films. This suggested the REELS plasmon loss spectra are always a combination of surface and bulk plasmon losses. The resulting summation of these two types of losses shifted the peak to below the bulk plasmon value but held its minimum to a higher energy than the pure surface plasmon value. Curve fitting supported this conclusion.
ContributorsStrawbridge, Brett William (Author) / Newman, Nathan (Thesis advisor) / Chamberlin, Ralph (Committee member) / Rizzo, Nicholas (Committee member) / Arizona State University (Publisher)
Created2012
149342-Thumbnail Image.png
Description
The object of this body of work is to study the properties and suitability of zinc oxide thin films with a view to engineering them for optoelectronics applications, making them a cheap and effective alternative to indium tin oxide (ITO), the most used transparent conducting oxides in the industry. Initially,

The object of this body of work is to study the properties and suitability of zinc oxide thin films with a view to engineering them for optoelectronics applications, making them a cheap and effective alternative to indium tin oxide (ITO), the most used transparent conducting oxides in the industry. Initially, a study was undertaken to examine the behavior of silver contacts to ZnO and ITO during thermal processing, a step frequently used in materials processing in optoelectronics. The second study involved an attempt to improve the conductivity of ZnO films by inserting a thin copper layer between two ZnO layers. The Hall resistivity of the films was as low as 6.9×10-5 -cm with a carrier concentration of 1.2×1022 cm-3 at the optimum copper layer thickness. The physics of conduction in the films has been examined. In order to improve the average visible transmittance, we replaced the copper layer with gold. The films were then found to undergo a seven orders of magnitude drop in effective resistivity from 200 -cm to 5.2×10-5 -cm The films have an average transmittance between 75% and 85% depending upon the gold thickness, and a peak transmittance of up to 93%. The best Haacke figure of merit was 15.1×10-3 . Finally, to test the multilayer transparent electrodes on a device, ZnO/Au/ZnO (ZAZ) electrodes were evaluated as transparent electrodes for organic light-emitting devices (OLEDs). The electrodes exhibited substantially enhanced conductivity (about 8×10-5 -cm) over conventional indium tin oxide (ITO) electrodes (about 3.2×10-5 -cm). OLEDs fabricated with the ZAZ electrodes showed reduced leakage compared to control OLEDs on ITO and reduced ohmic losses at high current densities. At a luminance of 25000 cd/m2, the lum/W efficiency of the ZAZ electrode based device improved by 5% compared to the device on ITO. A normalized intensity graph of the colour output from the green OLEDs shows that ZAZ electrodes allow for a broader spectral output in the green wavelength region of peak photopic sensitivity compared to ITO. The results have implications for electrode choice in display technology.
ContributorsSivaramakrishnan, Karthik (Author) / Alford, Terry L. (Thesis advisor) / Schroder, Dieter K. (Committee member) / Newman, Nathan (Committee member) / Theodore, David N (Committee member) / Arizona State University (Publisher)
Created2010
171653-Thumbnail Image.png
Description
Complex perovskite materials, including Ba(Zn1/3Ta2/3)O3 (BZT), are commonly used to make resonators and filters in communication systems because of their low dielectric loss and high-quality factors (Q). Transition metal additives are introduced (i.e., Ni2+, Co2+, Mn2+) to act as sintering agents and tune their temperature coefficient to zero or near-zero.

Complex perovskite materials, including Ba(Zn1/3Ta2/3)O3 (BZT), are commonly used to make resonators and filters in communication systems because of their low dielectric loss and high-quality factors (Q). Transition metal additives are introduced (i.e., Ni2+, Co2+, Mn2+) to act as sintering agents and tune their temperature coefficient to zero or near-zero. However, losses in these commercial dielectric materials at cryogenic temperatures increase markedly due to spin-excitation resulting from the presence of paramagnetic defects. Applying a large magnetic field (e.g., 5 Tesla) quenches these losses and has allowed the study of other loss mechanisms present at low temperatures. Work was performed on Fe3+ doped LaAlO3. At high magnetic fields, the residual losses versus temperature plots exhibit Debye peaks at ~40 K, ~75 K, and ~215 K temperature and can be tentatively associated with defect reactions O_i^x+V_O^x→O_i^'+V_O^•, Fe_Al^x+V_Al^"→Fe_Al^'+V_Al^' and Al_i^x+Al_i^(••)→〖2Al〗_i^•, respectively. Peaks in the loss tangent versus temperature graph of Zn-deficient BZT indicate a higher concentration of defects and appear to result from conduction losses.Guided by the knowledge gained from this study, a systematic study to develop high-performance microwave materials for ultra-high performance at cryogenic temperatures was performed. To this end, the production and characterization of perovskite materials that were either undoped or contained non-paramagnetic additives were carried out. Synthesis of BZT ceramic with over 98% theoretical density was obtained using B2O3 or BaZrO3 additives. At 4 K, the highest Q x f product of 283,000 GHz was recorded for 5% BaZrO3 doped BZT. A portable, inexpensive open-air spectrometer was designed, built, and tested to make the electron paramagnetic resonance (EPR) technique more accessible for high-school and university lab instruction. In this design, the sample is placed near a dielectric resonator and does not need to be enclosed in a cavity, as is used in commercial EPR spectrometers. Permanent magnets used produce fields up to 1500 G, enabling EPR measurements up to 3 GHz.
ContributorsGajare, Siddhesh Girish (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry (Committee member) / Tongay, Sefaattin (Committee member) / Chamberlin, Ralph (Committee member) / Arizona State University (Publisher)
Created2022
154352-Thumbnail Image.png
Description
Microwave properties of low-loss commercial dielectric materials are optimized by adding transition-metal dopants or alloying agents (i.e. Ni, Co, Mn) to tune the temperature coefficient of resonant frequency (τf) to zero. This occurs as a result of the temperature dependence of dielectric constant offsetting the thermal expansion. At cryogenic temperatures,

Microwave properties of low-loss commercial dielectric materials are optimized by adding transition-metal dopants or alloying agents (i.e. Ni, Co, Mn) to tune the temperature coefficient of resonant frequency (τf) to zero. This occurs as a result of the temperature dependence of dielectric constant offsetting the thermal expansion. At cryogenic temperatures, the microwave loss in these dielectric materials is dominated by electron paramagnetic resonance (EPR) loss, which results from the spin-excitations of d-shell electron spins in exchange-coupled clusters. We show that the origin of the observed magnetically-induced shifts in the dielectric resonator frequency originates from the same mechanism, as described by the Kramers-Kronig relations. The temperature coefficient of resonator frequency, τf, is related to three material parameters according to the equation, τf = - (½ τε + ½ τµ + αL), where τε, τµ, and αL are the temperature coefficient of dielectric constant, magnetic permeability, and lattice constant, respectively. Each of these parameters for dielectric materials of interest are measured experimentally. These results, in combination with density functional simulations, developed a much improved understanding of the fundamental mechanisms responsible for τf. The same experimental methods have been used to characterize in-situ the physical nature and concentration of performance-degrading point defects in the dielectrics of superconducting planar microwave resonators.
ContributorsZhang, Shengke (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry L. (Committee member) / Chamberlin, Ralph (Committee member) / Flores, Marco (Committee member) / Singh, Rakesh K. (Committee member) / Arizona State University (Publisher)
Created2016
155171-Thumbnail Image.png
Description
The use of nanoparticle-in-matrix composites is a common motif among a broad range of nanoscience applications and is of particular interest to the thermal sciences community. To explore this morphological theme, crystalline inorganic composites were synthesized by mixing colloidal CdSe nanocrystals and In2Se3 metal chalcogenide complex (MCC) precursor in hydrazine

The use of nanoparticle-in-matrix composites is a common motif among a broad range of nanoscience applications and is of particular interest to the thermal sciences community. To explore this morphological theme, crystalline inorganic composites were synthesized by mixing colloidal CdSe nanocrystals and In2Se3 metal chalcogenide complex (MCC) precursor in hydrazine solvent and then thermally transform the MCC precursor into a crystalline In2Se3 matrix. The volume fraction of CdSe nanocrystals was varied from 0 to ~100% .Rich structural and chemical interactions between the CdSe nanocrystals and the In2Se3 matrix were observed. The average thermal conductivities of the 100% In2Se3 and ~100% CdSe composites are 0.32 and 0.53 W/m-K, respectively, which are remarkably low for inorganic crystalline materials. With the exception of the ~100% CdSe samples, the thermal conductivities of these nanocomposites are insensitive to CdSe volume fraction.This insensitivity is attributed to competing effects rise from structural morphology changes during composite formation.

Next, thermoelectric properties of metal chalcogenide thin films deposited from precursors using thiol-amine solvent mixtures were first reported. Cu2-xSeyS1-y and Ag-doped Cu2-xSeyS1-y thin films were synthesized, and the interrelationship between structure, composition, and room temperature thermoelectric properties was studied. The precursor annealing temperature affects the metal:chalcogen ratio, and leads to charge carrier concentration changes that affect Seebeck coefficient and electrical conductivity. Incorporating Ag into the Cu2-xSeyS1-y film leads to appreciable improvements in thermoelectric performance. Overall, the room temperature thermoelectric properties of these solution-processed materials are comparable to measurements on Cu2-xSe alloys made via conventional thermoelectric material processing methods.

Finally, a new route to make soluble metal chalcogenide precursors by reacting organic dichalcogenides with metal in different solvents was reported. By this method, SnSe, PbSe, SnTe and PbSexTe1-x precursors were successfully synthesized, and phase-pure and impurity-free metal chalcogenides were recovered after precursor decomposition. Compared to the hydrazine and diamine-dithiol route, the new approach uses safe solvent, and avoids introducing unwanted sulfur into the precursor. SnSe and PbSexTe1-x thin films, both of which are interesting thermoelectric materials, were also successfully made by solution deposition. The thermoelectric property measurements on those thin films show a great potential for future improvements.
ContributorsMa, Yuanyu (Author) / Wang, Robert (Thesis advisor) / Newman, Nathan (Committee member) / Wang, Liping (Committee member) / Hildreth, Owen (Committee member) / Arizona State University (Publisher)
Created2016
158369-Thumbnail Image.png
Description
The chemical, structural, and electrical properties of niobium-silicon, niobium-germanium, and YBCO-dielectric interfaces are characterized. Reduction in the concentration of interfacial defects in these structures can improve the performance of (i) many devices including low-loss coplanar, microstrip, and stripline microwave resonators used in next-generation cryogenic communication, sensor, and quantum information technologies

The chemical, structural, and electrical properties of niobium-silicon, niobium-germanium, and YBCO-dielectric interfaces are characterized. Reduction in the concentration of interfacial defects in these structures can improve the performance of (i) many devices including low-loss coplanar, microstrip, and stripline microwave resonators used in next-generation cryogenic communication, sensor, and quantum information technologies and (ii) layers used in device isolation, inter-wiring dielectrics, and passivation in microwave and Josephson junction circuit fabrication.

Methods were developed to synthesize amorphous-Ge (a-Ge) and homoepitaxial-Si dielectric thin-films with loss tangents of 1–2×10 -6 and 0.6–2×10 -5 at near single-photon powers and sub-Kelvin temperatures (≈40 mK), making them potentially a better choice over undoped silicon and sapphire substrates used in quantum devices. The Nb/Ge interface has 20 nm of chemical intermixing, which is reduced by a factor of four using 10 nm Ta diffusion layers. Niobium coplanar resonators using this structure exhibit reduced microwave losses.

The nature and concentration of defects near Nb-Si interfaces prepared with commonly-used Si surface treatments were characterized. All samples have H, C, O, F, and Cl in the Si within 50 nm of the interface, and electrically active defects with activation energies of 0.147, 0.194, 0.247, 0.339, and 0.556 eV above the valence band maximum (E vbm ), with concentrations dominated by a hole trap at E vbm +0.556 eV (presumably Nb Si ). The optimum surface treatment is an HF etch followed by an in-situ 100 eV Ar ion mill. RCA etches, and higher energy ion milling processes increase the concentration of electrically active defects.

A thin SrTiO 3 buffer layer used in YBa 2 Cu 3 O 7-δ superconductor/high-performance Ba(Zn 1/3 Ta 2/3 )O 3 and Ba(Cd 1/3 Ta 2/3 )O 3 microwave dielectric trilayers improves the structural quality of the layers and results in 90 K superconductor critical temperatures. This advance enables the production of more compact high-temperature superconductor capacitors, inductors, and microwave microstrip and stripline devices.
ContributorsKopas, Cameron Joseph (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry L. (Committee member) / Carpenter, Ray W (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2020