Matching Items (11)
Filtering by

Clear all filters

152327-Thumbnail Image.png
Description
Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37-residue intrinsically disordered hormone involved in glucose regulation and gastric emptying. The aggregation of hIAPP into amyloid fibrils is believed to play a causal role in type 2 diabetes. To date, not much is known about the monomeric state

Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37-residue intrinsically disordered hormone involved in glucose regulation and gastric emptying. The aggregation of hIAPP into amyloid fibrils is believed to play a causal role in type 2 diabetes. To date, not much is known about the monomeric state of hIAPP or how it undergoes an irreversible transformation from disordered peptide to insoluble aggregate. IAPP contains a highly conserved disulfide bond that restricts hIAPP(1-8) into a short ring-like structure: N_loop. Removal or chemical reduction of N_loop not only prevents cell response upon binding to the CGRP receptor, but also alters the mass per length distribution of hIAPP fibers and the kinetics of fibril formation. The mechanism by which N_loop affects hIAPP aggregation is not yet understood, but is important for rationalizing kinetics and developing potential inhibitors. By measuring end-to-end contact formation rates, Vaiana et al. showed that N_loop induces collapsed states in IAPP monomers, implying attractive interactions between N_loop and other regions of the disordered polypeptide chain . We show that in addition to being involved in intra-protein interactions, the N_loop is involved in inter-protein interactions, which lead to the formation of extremely long and stable β-turn fibers. These non-amyloid fibers are present in the 10 μM concentration range, under the same solution conditions in which hIAPP forms amyloid fibers. We discuss the effect of peptide cyclization on both intra- and inter-protein interactions, and its possible implications for aggregation. Our findings indicate a potential role of N_loop-N_loop interactions in hIAPP aggregation, which has not previously been explored. Though our findings suggest that N_loop plays an important role in the pathway of amyloid formation, other naturally occurring IAPP variants that contain this structural feature are incapable of forming amyloids. For example, hIAPP readily forms amyloid fibrils in vitro, whereas the rat variant (rIAPP), differing by six amino acids, does not. In addition to being highly soluble, rIAPP is an effective inhibitor of hIAPP fibril formation . Both of these properties have been attributed to rIAPP's three proline residues: A25P, S28P and S29P. Single proline mutants of hIAPP have also been shown to kinetically inhibit hIAPP fibril formation. Because of their intrinsic dihedral angle preferences, prolines are expected to affect conformational ensembles of intrinsically disordered proteins. The specific effect of proline substitutions on IAPP structure and dynamics has not yet been explored, as the detection of such properties is experimentally challenging due to the low molecular weight, fast reconfiguration times, and very low solubility of IAPP peptides. High-resolution techniques able to measure tertiary contact formations are needed to address this issue. We employ a nanosecond laser spectroscopy technique to measure end-to-end contact formation rates in IAPP mutants. We explore the proline substitutions in IAPP and quantify their effects in terms of intrinsic chain stiffness. We find that the three proline mutations found in rIAPP increase chain stiffness. Interestingly, we also find that residue R18 plays an important role in rIAPP's unique chain stiffness and, together with the proline residues, is a determinant for its non-amyloidogenic properties. We discuss the implications of our findings on the role of prolines in IDPs.
ContributorsCope, Stephanie M (Author) / Vaiana, Sara M (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Ros, Robert (Committee member) / Lindsay, Stuart M (Committee member) / Ozkan, Sefika B (Committee member) / Arizona State University (Publisher)
Created2013
151652-Thumbnail Image.png
Description
Single molecule DNA Sequencing technology has been a hot research topic in the recent decades because it holds the promise to sequence a human genome in a fast and affordable way, which will eventually make personalized medicine possible. Single molecule differentiation and DNA translocation control are the two main challenges

Single molecule DNA Sequencing technology has been a hot research topic in the recent decades because it holds the promise to sequence a human genome in a fast and affordable way, which will eventually make personalized medicine possible. Single molecule differentiation and DNA translocation control are the two main challenges in all single molecule DNA sequencing methods. In this thesis, I will first introduce DNA sequencing technology development and its application, and then explain the performance and limitation of prior art in detail. Following that, I will show a single molecule DNA base differentiation result obtained in recognition tunneling experiments. Furthermore, I will explain the assembly of a nanofluidic platform for single strand DNA translocation, which holds the promised to be integrated into a single molecule DNA sequencing instrument for DNA translocation control. Taken together, my dissertation research demonstrated the potential of using recognition tunneling techniques to serve as a general readout system for single molecule DNA sequencing application.
ContributorsLiu, Hao (Author) / Lindsay, Stuart M (Committee member) / Yan, Hao (Committee member) / Levitus, Marcia (Committee member) / Arizona State University (Publisher)
Created2013
150988-Thumbnail Image.png
Description
The photosynthetic reaction center is a type of pigment-protein complex found widely in photosynthetic bacteria, algae and higher plants. Its function is to convert the energy of sunlight into a chemical form that can be used to support other life processes. The high efficiency and structural simplicity make the bacterial

The photosynthetic reaction center is a type of pigment-protein complex found widely in photosynthetic bacteria, algae and higher plants. Its function is to convert the energy of sunlight into a chemical form that can be used to support other life processes. The high efficiency and structural simplicity make the bacterial reaction center a paradigm for studying electron transfer in biomolecules. This thesis starts with a comparison of the primary electron transfer process in the reaction centers from the Rhodobacter shperoides bacterium and those from its thermophilic homolog, Chloroflexus aurantiacus. Different temperature dependences in the primary electron transfer were found in these two type of reaction centers. Analyses of the structural differences between these two proteins suggested that the excess surface charged amino acids as well as a larger solvent exposure area in the Chloroflexus aurantiacus reaction center could explain the different temperature depenence. The conclusion from this work is that the electrostatic interaction potentially has a major effect on the electron transfer. Inspired by these results, a single point mutant was designed for Rhodobacter shperoides reaction centers by placing an ionizable amino acid in the protein interior to perturb the dielectrics. The ionizable group in the mutation site largely deprotonated in the ground state judging from the cofactor absorption spectra as a function of pH. By contrast, a fast charge recombination assoicated with protein dielectric relaxation was observed in this mutant, suggesting the possibility that dynamic protonation/deprotonation may be taking place during the electron transfer. The fast protein dielectric relaxation occuring in this mutant complicates the electron transfer pathway and reduces the yield of electron transfer to QA. Considering the importance of the protein dielectric environment, efforts have been made in quantifying variations of the internal field during charge separation. An analysis protocol based on the Stark effect of reaction center cofactor spectra during charge separation has been developed to characterize the charge-separated radical field acting on probe chromophores. The field change, monitored by the dynamic Stark shift, correlates with, but is not identical to, the electron transfer kinetics. The dynamic Stark shift results have lead to a dynamic model for the time-dependent dielectric that is complementary to the static dielectric asymmetry observed in past steady state experiments. Taken together, the work in this thesis emphasizes the importance of protein electrostatics and its dielectric response to electron transfer.
ContributorsGuo, Zhi (Author) / Woodbury, Neal W (Thesis advisor) / Lindsay, Stuart M (Committee member) / Ross, Robert (Committee member) / Ozkan, Banu S (Committee member) / Moore, Thomas A. (Committee member) / Arizona State University (Publisher)
Created2012
151257-Thumbnail Image.png
Description
The heliobacterial reaction center (HbRC) is widely considered the simplest and most primitive photosynthetic reaction center (RC) still in existence. Despite the simplicity of the HbRC, many aspects of the electron transfer mechanism remain unknown or under debate. Improving our understanding of the structure and function of the HbRC is

The heliobacterial reaction center (HbRC) is widely considered the simplest and most primitive photosynthetic reaction center (RC) still in existence. Despite the simplicity of the HbRC, many aspects of the electron transfer mechanism remain unknown or under debate. Improving our understanding of the structure and function of the HbRC is important in determining its role in the evolution of photosynthetic RCs. In this work, the function and properties of the iron-sulfur cluster FX and quinones of the HbRC were investigated, as these are the characteristic terminal electron acceptors used by Type-I and Type-II RCs, respectively. In Chapter 3, I develop a system to directly detect quinone double reduction activity using reverse-phase high pressure liquid chromatography (RP-HPLC), showing that Photosystem I (PSI) can reduce PQ to PQH2. In Chapter 4, I use RP-HPLC to characterize the HbRC, showing a surprisingly small antenna size and confirming the presence of menaquinone (MQ) in the isolated HbRC. The terminal electron acceptor FX was characterized spectroscopically and electrochemically in Chapter 5. I used three new systems to reduce FX in the HbRC, using EPR to confirm a S=3/2 ground-state for the reduced cluster. The midpoint potential of FX determined through thin film voltammetry was -372 mV, showing the cluster is much less reducing than previously expected. In Chapter 7, I show light-driven reduction of menaquinone in heliobacterial membrane samples using only mild chemical reductants. Finally, I discuss the evolutionary implications of these findings in Chapter 7.
ContributorsCowgill, John (Author) / Redding, Kevin (Thesis advisor) / Jones, Anne (Committee member) / Fromme, Petra (Committee member) / Arizona State University (Publisher)
Created2012
135875-Thumbnail Image.png
Description
With a quantum efficiency of nearly 100%, the electron transfer process that occurs within the reaction center protein of the photosynthetic bacteria Rhodobacter (Rh.) sphaeroides is a paragon for understanding the complexities, intricacies, and overall systemization of energy conversion and storage in natural systems. To better understand the way in

With a quantum efficiency of nearly 100%, the electron transfer process that occurs within the reaction center protein of the photosynthetic bacteria Rhodobacter (Rh.) sphaeroides is a paragon for understanding the complexities, intricacies, and overall systemization of energy conversion and storage in natural systems. To better understand the way in which photons of light are captured, converted into chemically useful forms, and stored for biological use, an investigation into the reaction center protein, specifically into its cascade of cofactors, was undertaken. The purpose of this experimentation was to advance our knowledge and understanding of how differing protein environments and variant cofactors affect the spectroscopic aspects of and electron transfer kinetics within the reaction of Rh. sphaeroides. The native quinone, ubiquinone, was extracted from its pocket within the reaction center protein and replaced by non-native quinones having different reduction/oxidation potentials. It was determined that, of the two non-native quinones tested—1,2-naphthaquinone and 9,10- anthraquinone—the substitution of the anthraquinone (lower redox potential) resulted in an increased rate of recombination from the P+QA- charge-separated state, while the substitution of the napthaquinone (higher redox potential) resulted in a decreased rate of recombination.
ContributorsSussman, Hallie Rebecca (Author) / Woodbury, Neal (Thesis director) / Redding, Kevin (Committee member) / Lin, Su (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
149420-Thumbnail Image.png
Description
In eukaryotes, DNA is packed in a highly condensed and hierarchically organized structure called chromatin, in which DNA tightly wraps around the histone octamer consisting of one histone 3-histone 4 (H3-H4) tetramer and two histone 2A- histone 2B (H2A-H2B) dimers with 147 base pairs in an almost two left handed

In eukaryotes, DNA is packed in a highly condensed and hierarchically organized structure called chromatin, in which DNA tightly wraps around the histone octamer consisting of one histone 3-histone 4 (H3-H4) tetramer and two histone 2A- histone 2B (H2A-H2B) dimers with 147 base pairs in an almost two left handed turns. Almost all DNA dependent cellular processes, such as DNA duplication, transcription, DNA repair and recombination, take place in the chromatin form. Based on the critical importance of appropriate chromatin condensation, this thesis focused on the folding behavior of the nucleosome array reconstituted using different templates with various controllable factors such as histone tail modification, linker DNA length, and DNA binding proteins. Firstly, the folding behaviors of wild type (WT) and nucleosome arrays reconstituted with acetylation on the histone H4 at lysine 16 (H4K16 (Ac)) were studied. In contrast to the sedimentation result, atomic force microscopy (AFM) measurements revealed no apparent difference in the compact nucleosome arrays between WT and H4K16 (Ac) and WT. Instead, an optimal loading of nucleosome along the template was found necessary for the Mg2+ induced nucleosome array compaction. This finding leads to the further study on the role of linker DNA in the nucleosome compaction. A method of constructing DNA templates with varied linker DNA lengths was developed, and uniformly and randomly spaced nucleosome arrays with average linker DNA lengths of 30 bp and 60 bp were constructed. After comprehensive analyses of the nucleosome arrays' structure in mica surface, the lengths of the linker DNA were found playing an important role in controlling the structural geometries of nucleosome arrays in both their extended and compact forms. In addition, higher concentration of the DNA binding domain of the telomere repeat factor 2 (TRF2) was found to stimulate the compaction of the telomeric nucleosome array. Finally, AFM was successfully applied to investigate the nucleosome positioning behaviors on the Mouse Mammary Tumor Virus (MMTV) promoter region, and two highly positioned region corresponded to nucleosome A and B were identified by this method.
ContributorsFu, Qiang (Author) / Lindsay, Stuart M (Thesis advisor) / Yan, Hao (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2010
134989-Thumbnail Image.png
Description
The FoF1 ATP synthase is a molecular motor critical to the metabolism of virtually all life forms, and it acts in the manner of a hydroelectric generator. The F1 complex contains an (αβ)3 (hexamer) ring in which catalysis occurs, as well as a rotor comprised by subunit-ε in addition to

The FoF1 ATP synthase is a molecular motor critical to the metabolism of virtually all life forms, and it acts in the manner of a hydroelectric generator. The F1 complex contains an (αβ)3 (hexamer) ring in which catalysis occurs, as well as a rotor comprised by subunit-ε in addition to the coiled-coil and globular foot domains of subunit-γ. The F1 complex can hydrolyze ATP in vitro in a manner that drives counterclockwise (CCW) rotation, in 120° power strokes, as viewed from the positive side of the membrane. The power strokes that occur in ≈ 300 μsec are separated by catalytic dwells that occur on a msec time scale. A single-molecule rotation assay that uses the intensity of polarized light, scattered from a 75 × 35 nm gold nanorod, determined the average rotational velocity of the power stroke (ω, in degrees/ms) as a function of the rotational position of the rotor (θ, in degrees, measured in reference to the catalytic dwell). The velocity is not constant but rather accelerates and decelerates in two Phases. Phase-1 (0° - 60°) is believed to derive power from elastic energy in the protein. At concentrations of ATP that limit the rate of ATP hydrolysis, the rotor can stop for an ATP-binding dwell during Phase-1. Although the most probable position that the ATP-binding dwell occurs is 40° after the catalytic dwell, the ATP-binding dwell can occur at any rotational position during Phase-1 of the power stroke. Phase-2 of the power stroke (60° - 120°) is believed to be powered by the ATP-binding induced closure of the lever domain of a β-subunit (as it acts as a cam shaft against the γ-subunit). Algorithms were written, to sort and analyze F1-ATPase power strokes, to determine the average rotational velocity profile of power strokes as a function of the rotational position at which the ATP-binding dwell occurs (θATP-bd), and when the ATP-binding dwell is absent. Sorting individual ω(θ) curves, as a function of θATP-bd, revealed that a dependence of ω on
θATP-bd exists. The ATP-binding dwell can occur even at saturating ATP concentrations. We report that ω follows a distinct pattern in the vicinity of the ATP-binding dwell, and that the ω(θ) curve contains the same oscillations within it regardless of θATP-bd. We observed that an acceleration/deceleration dependence before and after the ATP-binding dwell, respectively, remained for increasing time intervals as the dwell occurred later in Phase-1, to a maximum of ≈ 40°. The results were interpreted in terms of a model in which the ATP-binding dwell results from internal drag at a variable position on the γε rotor.
ContributorsBukhari, Zain Aziz (Author) / Frasch, Wayne D. (Thesis director) / Allen, James P. (Committee member) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135187-Thumbnail Image.png
Description
Transient Receptor Potential (TRP) ion channels are a diverse family of nonselective, polymodal sensors in uni- and multicellular eukaryotes that are implicated in an assortment of biological contexts and human disease. The cold-activated TRP Melastatin-8 (TRPM8) channel, also recognized as the human body's primary cold sensor, is among the few

Transient Receptor Potential (TRP) ion channels are a diverse family of nonselective, polymodal sensors in uni- and multicellular eukaryotes that are implicated in an assortment of biological contexts and human disease. The cold-activated TRP Melastatin-8 (TRPM8) channel, also recognized as the human body's primary cold sensor, is among the few TRP channels responsible for thermosensing. Despite sustained interest in the channel, the mechanisms underlying TRPM8 activation, modulation, and gating have proved challenging to study and remain poorly understood. In this thesis, I offer data collected on various expression, extraction, and purification conditions tested in E. Coli expression systems with the aim to optimize the generation of a structurally stable and functional human TRPM8 pore domain (S5 and S6) construct for application in structural biology studies. These studies, including the biophysical technique nuclear magnetic spectroscopy (NMR), among others, will be essential for elucidating the role of the TRPM8 pore domain in in regulating ligand binding, channel gating, ion selectively, and thermal sensitivity. Moreover, in the second half of this thesis, I discuss the ligation-independent megaprimer PCR of whole-plasmids (MEGAWHOP PCR) cloning technique, and how it was used to generate chimeras between TRPM8 and its nearest analog TRPM2. I review steps taken to optimize the efficiency of MEGAWHOP PCR and the implications and unique applications of this novel methodology for advancing recombinant DNA technology. I lastly present preliminary electrophysiological data on the chimeras, employed to isolate and study the functional contributions of each individual transmembrane helix (S1-S6) to TRPM8 menthol activation. These studies show the utility of the TRPM8\u2014TRPM2 chimeras for dissecting function of TRP channels. The average current traces analyzed thus far indicate that the S2 and S3 helices appear to play an important role in TRPM8 menthol modulation because the TRPM8[M2S2] and TRPM8[M2S3] chimeras significantly reduce channel conductance in the presence of menthol. The TRPM8[M2S4] chimera, oppositely, increases channel conductance, implying that the S4 helix in native TRPM8 may suppress menthol modulation. Overall, these findings show that there is promise in the techniques chosen to identify specific regions of TRPM8 crucial to menthol activation, though the methods chosen to study the TRPM8 pore independent from the whole channel may need to be reevaluated. Further experiments will be necessary to refine TRPM8 pore solubilization and purification before structural studies can proceed, and the electrophysiology traces observed for the chimeras will need to be further verified and evaluated for consistency and physiological significance.
ContributorsWaris, Maryam Siddika (Author) / Van Horn, Wade (Thesis director) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
154656-Thumbnail Image.png
Description
Richard Feynman said “There’s plenty of room at the bottom”. This inspired the techniques to improve the single molecule measurements. Since the first single molecule study was in 1961, it has been developed in various field and evolved into powerful tools to understand chemical and biological property of molecules. This

Richard Feynman said “There’s plenty of room at the bottom”. This inspired the techniques to improve the single molecule measurements. Since the first single molecule study was in 1961, it has been developed in various field and evolved into powerful tools to understand chemical and biological property of molecules. This thesis demonstrates electronic single molecule measurement with Scanning Tunneling Microscopy (STM) and two of applications of STM; Break Junction (BJ) and Recognition Tunneling (RT). First, the two series of carotenoid molecules with four different substituents were investigated to show how substituents relate to the conductance and molecular structure. The measured conductance by STM-BJ shows that Nitrogen induces molecular twist of phenyl distal substituents and conductivity increasing rather than Carbon. Also, the conductivity is adjustable by replacing the sort of residues at phenyl substituents. Next, amino acids and peptides were identified through STM-RT. The distribution of the intuitive features (such as amplitude or width) are mostly overlapped and gives only a little bit higher separation probability than random separation. By generating some features in frequency and cepstrum domain, the classification accuracy was dramatically increased. Because of large data size and many features, supporting vector machine (machine learning algorithm for big data) was used to identify the analyte from a data pool of all analytes RT data. The STM-RT opens a possibility of molecular sequencing in single molecule level. Similarly, carbohydrates were studied by STM-RT. Carbohydrates are difficult to read the sequence, due to their huge number of possible isomeric configurations. This study shows that STM-RT can identify not only isomers of mono-saccharides and disaccharides, but also various mono-saccharides from a data pool of eleven analytes. In addition, the binding affinity between recognition molecule and analyte was investigated by comparing with surface plasmon resonance. In present, the RT technique is applying to chip type sequencing device onto solid-state nanopore to read out glycosaminoglycans which is ubiquitous to all mammalian cells and controls biological activities.
ContributorsIm, Jong One (Author) / Lindsay, Stuart M (Thesis advisor) / Zhang, Peiming (Committee member) / Ros, Robert (Committee member) / Chamberlin, Ralph (Committee member) / Arizona State University (Publisher)
Created2016
152968-Thumbnail Image.png
Description
Membrane proteins are a vital part of cellular structure. They are directly involved in many important cellular functions, such as uptake, signaling, respiration, and photosynthesis, among others. Despite their importance, however, less than 500 unique membrane protein structures have been determined to date. This is due to several difficulties with

Membrane proteins are a vital part of cellular structure. They are directly involved in many important cellular functions, such as uptake, signaling, respiration, and photosynthesis, among others. Despite their importance, however, less than 500 unique membrane protein structures have been determined to date. This is due to several difficulties with macromolecular crystallography, primarily the difficulty of growing large, well-ordered protein crystals. Since the first proof of concept for femtosecond nanocrystallography showing that diffraction patterns can be collected on extremely small crystals, thus negating the need to grow larger crystals, there have been many exciting advancements in the field. The technique has been proven to show high spatial resolution, thus making it a viable method for structural biology. However, due to the ultrafast nature of the technique, which allows for a lack of radiation damage in imaging, even more interesting experiments are possible, and the first temporal and spatial images of an undamaged structure could be acquired. This concept was denoted as time-resolved femtosecond nanocrystallography.

This dissertation presents on the first time-resolved data set of Photosystem II where structural changes can actually be seen without radiation damage. In order to accomplish this, new crystallization techniques had to be developed so that enough crystals could be made for the liquid jet to deliver a fully hydrated stream of crystals to the high-powered X-ray source. These changes are still in the preliminary stages due to the slightly lower resolution data obtained, but they are still a promising show of the power of this new technique. With further optimization of crystal growth methods and quality, injection technique, and continued development of data analysis software, it is only a matter of time before the ability to make movies of molecules in motion from X-ray diffraction snapshots in time exists. The work presented here is the first step in that process.
ContributorsKupitz, Christopher (Author) / Fromme, Petra (Thesis advisor) / Spence, John C. (Thesis advisor) / Redding, Kevin (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2014