Matching Items (5)
Filtering by

Clear all filters

131787-Thumbnail Image.png
Description
I am evaluating the genomic basis of a model of heat tolerance in which organisms succumb to warming when their demand for oxygen exceeds their supply. This model predicts that tolerance of hypoxia should correlate genetically with tolerance of heat. To evaluate this prediction, I tested heat and hypoxia tolerance

I am evaluating the genomic basis of a model of heat tolerance in which organisms succumb to warming when their demand for oxygen exceeds their supply. This model predicts that tolerance of hypoxia should correlate genetically with tolerance of heat. To evaluate this prediction, I tested heat and hypoxia tolerance in several genetic lines of Drosophila melanogaster. I hypothesized that genotypes that can fly better at high temperatures are also able to fly well at hypoxia. Genotypes from the Drosophila Genetic Reference Panel (DGRP) were assessed for flight at hypoxia and normal temperature (12% O2 and 25°C) as well as normoxia and high temperature (21% O2 and 39°C). After testing 66 lines from the DGRP, the oxygen- and capacity-limited thermal tolerance theory is supported; hypoxia-resistant lines are more likely to be heat-resistant. This supports previous research, which suggested an interaction between the tolerance of the two environmental variables. I used this data to perform a genome-wide association study to find specific single-nucleotide polymorphisms associated with heat tolerance and hypoxia tolerance but found no specific genomic markers. Understanding factors that limit an organism’s stress tolerance as well as the regions of the genome that dictate this phenotype should enable us to predict how organisms may respond to the growing threat of climate change.
ContributorsFredette-Roman, Jacob Daniel (Author) / Angilletta, Michael (Thesis director) / VandenBrooks, John (Committee member) / Youngblood, Jacob (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
190800-Thumbnail Image.png
Description
Ectotherms rely on external heat to attain target body temperatures which can vary based on the animal’s current physiological activity. Many ectotherms become thermophilic (“heat-loving”) during crucial physiological processes like digestion and reproduction, behaviorally thermoregulating to increase body temperature higher than what they otherwise prefer. However, there is a positive

Ectotherms rely on external heat to attain target body temperatures which can vary based on the animal’s current physiological activity. Many ectotherms become thermophilic (“heat-loving”) during crucial physiological processes like digestion and reproduction, behaviorally thermoregulating to increase body temperature higher than what they otherwise prefer. However, there is a positive relationship between body temperature and water loss that dictates increasing body temperature typically elicits an increase in water loss. Animals that inhabit areas where water is at least seasonally limited (e.g., deserts, wet-dry forests) may face a tradeoff between prioritizing behavioral thermophily to optimize physiological processes versus prioritizing water balance and potentially sacrificing some aspect of total performance capability.It is thus far unknown how reduced water availability and subsequent dehydration may influence thermophily in ectotherms. I hypothesized that behaviorally thermoregulating ectotherms exhibit thermophily during critical physiological events, and the extent to which thermophily is expressed is influenced by the animal’s hydric state. Using Children’s pythons (Antaresia childreni), I investigated the effects of dehydration on behavioral thermophily during digestion and reproduction. I found that dehydration caused a suppression in digestion-associated thermophily, where dehydrated snakes returned to pre-feeding body temperature sooner than they did when they were hydrated. In contrast, water deprivation at different reproductive stages had no effect on thermophily despite leading to a significant increase in the female’s plasma osmolality. ii Additionally, the timing of water deprivation during reproduction had differing effects on plasma osmolality and circulating triglyceride, total protein, and corticosterone concentrations. My research provides evidence of the sensitive and complex dynamic between body temperature, water balance, and physiological processes. At a time when many dry ecosystems are becoming hotter and drier, my investigation of dehydration and its influence on thermal dynamics and physiological metrics provides insight into cryptic effects on the vital processes of digestion and reproduction.
ContributorsAzzolini, Jill L. (Author) / Denardo, Dale F. (Thesis advisor) / John-Alder, Henry (Committee member) / Angilletta, Michael (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2023
168609-Thumbnail Image.png
Description
By increasing the mean and variance of environmental temperatures, climate change has caused local extinctions and range shifts of numerous species. However, biologists disagree on which populations and species are most vulnerable to future warming. This debate arises because biologists do not know which physiological processes are most vulnerable to

By increasing the mean and variance of environmental temperatures, climate change has caused local extinctions and range shifts of numerous species. However, biologists disagree on which populations and species are most vulnerable to future warming. This debate arises because biologists do not know which physiological processes are most vulnerable to temperature or how to model these processes in complex environments. Using the South American locust (Schistocerca cancellata) as a model system, my dissertation addressed this debate and explained how climate limits the persistence of locust populations. Locusts of S. cancellata are serious agricultural pests with occasional outbreaks covering up to 4 million km2 over six countries. Because outbreaks are largely driven by climate, understanding how climate limits the persistence of locusts may help predict crop losses in future climates. To achieve this aim, I integrated observational, experimental, and computational approaches. First, I tested a physiological model of heat stress. By measuring the heat tolerance of locusts under different oxygen concentrations, I demonstrated that heat tolerance depends on oxygen supply during the hatchling stage only. Second, I modeled the geographic distribution of locusts using physiological traits. I started by measuring thermal effects on consumption and defecation of field-captured locusts, and I then used these data to model energy gain in current and future climates. My results indicated that incorporating physiological mechanisms can improve the accuracy of models and alter predicted impacts of climate change. Finally, I explored the causes and consequences of intraspecific variation in heat tolerance. After measuring heat tolerance of locusts in different hydration states and developmental stages, I modeled survival in historical microclimates. My models indicated that recent climate change has amplified the risk of overheating for locusts, and this risk depended strongly on shade availability, hydration state, and developmental stage. Therefore, the survival of locusts in future climates will likely depend on their access to shade and water. Overall, my dissertation argues that modeling physiological mechanisms can improve the ability of biologists to predict the impacts of climate change.
ContributorsYoungblood, Jacob (Author) / Angilletta, Michael (Thesis advisor) / Buckley, Lauren (Committee member) / Cease, Arianne (Committee member) / Smith, Brian (Committee member) / Vanden Brooks, John (Committee member) / Arizona State University (Publisher)
Created2022
154322-Thumbnail Image.png
Description
The unique anatomical and functional properties of vasculature determine the susceptibility of the spinal cord to ischemia. The spinal cord vascular architecture is designed to withstand major ischemic events by compensating blood supply via important anastomotic channels. One of the important compensatory channels of the arterial basket of the conus

The unique anatomical and functional properties of vasculature determine the susceptibility of the spinal cord to ischemia. The spinal cord vascular architecture is designed to withstand major ischemic events by compensating blood supply via important anastomotic channels. One of the important compensatory channels of the arterial basket of the conus medullaris (ABCM). ABCM consists of one or two arteries arising from the anterior spinal artery (ASA) and circumferentially connecting the ASA and the posterior spinal arteries. In addition to compensatory function, the arterial basket can be involved in arteriovenous fistulae and malformations of the conus. The morphometric anatomical analysis of the ABCM was performed with emphasis on vessel diameters and branching patterns.

A significant ischemic event that overcomes vascular compensatory capacity causes spinal cord injury (SCI). For example, SCI complicating thoracoabdominal aortic aneurysm repair is associated with ischemic injury. The rate of this devastating complication has been decreased significantly by instituting physiological methods of protection. Traumatic spinal cord injury causes complex changes in spinal cord blood flow (SCBF), which are closely related to a severity of injury. Manipulating physiological parameters such as mean arterial pressure (MAP) and intrathecal pressure (ITP) may be beneficial for patients with a spinal cord injury. It was discovered in a pig model of SCI that the combination of MAP elevation and cerebrospinal fluid drainage (CSFD) significantly and sustainably improved SCBF and spinal cord perfusion pressure.

In animal models of SCI, regeneration is usually evaluated histologically, requiring animal sacrifice. Thus, there is a need for a technique to detect changes in SCI noninvasively over time. The study was performed comparing manganese-enhanced magnetic resonance imaging (MEMRI) in hemisection and transection SCI rat models with diffusion tensor imaging (DTI) and histology. MEMERI ratio differed among transection and hemisection groups, correlating to a severity of SCI measured by fraction anisotropy and myelin load. MEMRI is a useful noninvasive tool to assess a degree of neuronal damage after SCI.
ContributorsMartirosyan, Nikolay (Author) / Preul, Mark C (Thesis advisor) / Vernon, Brent (Thesis advisor) / Theodore, Nicholas (Committee member) / Lemole, Gerald M. (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2016
154914-Thumbnail Image.png
Description
There is considerable recent interest in the dynamic nature of immune function in the context of an animal’s internal and external environment. An important focus within this field of ecoimmunology is on how availability of resources such as energy can alter immune function. Water is an additional resource that drives

There is considerable recent interest in the dynamic nature of immune function in the context of an animal’s internal and external environment. An important focus within this field of ecoimmunology is on how availability of resources such as energy can alter immune function. Water is an additional resource that drives animal development, physiology, and behavior, yet the influence hydration has on immunity has received limited attention. In particular, hydration state may have the greatest potential to drive fluctuations in immunity and other physiological functions in species that live in water-limited environments where they may experience periods of dehydration. To shed light on the sensitivity of immune function to hydration state, I first tested the effect of hydration states (hydrated, dehydrated, and rehydrated) and digestive states on innate immunity in the Gila monster, a desert-dwelling lizard. Though dehydration is often thought to be stressful and, if experienced chronically, likely to decrease immune function, dehydration elicited an increase in immune response in this species, while digestive state had no effect. Next, I tested whether dehydration was indeed stressful, and tested a broader range of immune measures. My findings validated the enhanced innate immunity across additional measures and revealed that Gila monsters lacked a significant stress hormone response during dehydration (though results were suggestive). I next sought to test if life history (in terms of environmental stability) drives these differences in dehydration responses using a comparative approach. I compared four confamilial pairs of squamate species that varied in habitat type within each pair—four species that are adapted to xeric environments and four that are adapted to more mesic environments. No effect of life history was detected between groups, but hydration was a driver of some measures of innate immunity and of stress hormone concentrations in multiple species. Additionally, species that exhibited a stress response to dehydration did not have decreased innate immunity, suggesting these physiological responses may often be decoupled. My dissertation work provides new insight into the relationship between hydration, stress, and immunity, and it may inform future work exploring disease transmission or organismal responses to climate change.
ContributorsMoeller, Karla T (Author) / DeNardo, Dale (Thesis advisor) / Angilletta, Michael (Committee member) / French, Susannah (Committee member) / Rutowski, Ronald (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2016