Matching Items (4)
Filtering by

Clear all filters

131303-Thumbnail Image.png
Description
The purpose of this study was to compare the speech and motor functions a group of individuals with Childhood Apraxia of Speech (CAS) and a case study of an individual who has suffered a right cerebellar stroke. The participants consisted of one case study adult and three families made u

The purpose of this study was to compare the speech and motor functions a group of individuals with Childhood Apraxia of Speech (CAS) and a case study of an individual who has suffered a right cerebellar stroke. The participants consisted of one case study adult and three families made up of three to five members each, all with a history of CAS. All of the participants in the study performed below average on speech and motor function tests. There are some comparable similarities between the CAS group and the case study individual suggesting that there is cerebellar involvement in the fine motor skills needed to perform speech movements.
ContributorsWilliams, Emma (Author) / Peter, Beate (Thesis director) / Bruce, Laurel (Committee member) / College of Health Solutions (Contributor, Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description

Social isolation in early childhood can have life-long effects on social behaviors and development. Cerebellar crus I has additionally been linked to social behaviors through forebrain pathways. In this study, we hypothesized that social isolation of mice from postnatal day 21 (P21) until p35 would result in impaired social behaviors.

Social isolation in early childhood can have life-long effects on social behaviors and development. Cerebellar crus I has additionally been linked to social behaviors through forebrain pathways. In this study, we hypothesized that social isolation of mice from postnatal day 21 (P21) until p35 would result in impaired social behaviors. Additionally, we hypothesized that gq DREADD injections into crus I, to increase levels of cerebellar stimulation, at the start of the isolation period would counteract the effects of isolation, leading to mice who displayed normal social behaviors. Social behavior at P35 was tested using the 3-Chamber Task, a well-established model, and SLEAP deep-learning software was used to obtain quantifiable data. We found no difference in social behaviors between socially raised and isolated mice. However, gq DREADD mice displayed greater levels of social interaction and exploration than either socially raised mice or isolated mice. This research carries implications for possible therapeutic interventions for groups prone to social isolation, such as those with developmental disabilities, minority groups, the elderly, and prison populations.

ContributorsIttner, Marina (Author) / Verpeut, Jessica (Thesis director) / Doane, Leah (Committee member) / Conrad, Cheryl (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Department of Psychology (Contributor) / School of Criminology and Criminal Justice (Contributor)
Created2023-05
Description
The cerebellum is recognized for its role in motor movement, balance, and more recently, social behavior. Cerebellar injury at birth and during critical periods reduces social preference in animal models and increases the risk of autism in humans. Social behavior is commonly assessed with the three-chamber test, where a mouse

The cerebellum is recognized for its role in motor movement, balance, and more recently, social behavior. Cerebellar injury at birth and during critical periods reduces social preference in animal models and increases the risk of autism in humans. Social behavior is commonly assessed with the three-chamber test, where a mouse travels between chambers that contain a conspecific and an object confined under a wire cup. However, this test is unable to quantify interactive behaviors between pairs of mice, which could not be tracked until the recent development of machine learning programs that track animal behavior. In this study, both the three-chamber test and a novel freely-moving social interaction test assessed social behavior in untreated male and female mice, as well as in male mice injected with hM3Dq (excitatory) DREADDs. In the three-chamber test, significant differences were found in the time spent (female: p < 0.05, male: p < 0.001) and distance traveled (female: p < 0.05, male: p < 0.001) in the chamber with the familiar conspecific, compared to the chamber with the object, for untreated male, untreated female, and mice with activated hM3Dq DREADDs. A social memory test was added, where the object was replaced with a novel mouse. Untreated male mice spent significantly more time (p < 0.05) and traveled a greater distance (p < 0.05) in the chamber with the novel mouse, while male mice with activated hM3Dq DREADDs spent more time (p<0.05) in the chamber with the familiar conspecific. Data from the freely-moving social interaction test was used to calculate freely-moving interactive behaviors between pairs of mice and interactions with an object. No sex differences were found, but mice with excited hM3Dq DREADDs engaged in significantly more anogenital sniffing (p < 0.05) and side-side contact (p < 0.05) behaviors. All these results indicate how machine learning allows for nuanced insights into how both sex and chemogenetic excitation impact social behavior in freely-moving mice.
ContributorsNelson, Megan (Author) / Verpeut, Jessica (Thesis director) / Bimonte-Nelson, Heather (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2024-05
193297-Thumbnail Image.png
Description
Autism spectrum disorder (ASD) is characterized by deficits in flexible cognition and social behavior. The most common atypical brain structure in ASD, the cerebellum, has multisynaptic connections through the cerebellar nuclei (CN) and thalamus to cognitive- and social-associated brain regions, yet formation and modulation of these pathways are not fully

Autism spectrum disorder (ASD) is characterized by deficits in flexible cognition and social behavior. The most common atypical brain structure in ASD, the cerebellum, has multisynaptic connections through the cerebellar nuclei (CN) and thalamus to cognitive- and social-associated brain regions, yet formation and modulation of these pathways are not fully understood. Additionally, a CN output mechanism, perineuronal nets (PNNs), structure and function are undefined. PNNs are specialized extracellular matrix structures whose appearance is associated with the end of the critical period of plasticity and have been implicated in learning and neurodevelopmental disorders, but their role in the CN during development is unknown.To examine the role of CN on cognition, CN activity was increased or decreased in both male and female mice using Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) from postnatal day 21-35. Learning and reversal was analyzed using a pairwise visual discrimination task. Social behavior was assessed using a classic three-chamber assay and analyzed using SLEAP (Social Leap Estimates Animal Poses). A marker of critical periods, perineuronal nets (PNNs), was examined to understand relationships between neural development and behavior. Interestingly, adolescent CN disruption did not alter task acquisition, yet correct choice reversal performance was dependent on DREADD manipulation and sex. CN inhibition improved reversal learning in males (5 days faster to criteria) and CN excitation improved female reversal learning (10 days faster to criteria) compared to controls. Analysis of social behavior revealed male social preference was abolished in CN manipulated groups, whereas females failed to demonstrate a social preference. Interestingly, CN manipulation in females regardless of direction, reduced PNN intensity, whereas in males only CN inhibition reduced PNN intensity. PNN intensity negatively correlated with reversal performance. CN PNN intensity showed no relation to social behavior. These data suggest chronic adolescent CN manipulation may have compensatory changes in PNN structure and CN output to improve reversal learning and PNN function was unrelated to social behavior. This study provides new evidence for CN in non-motor functions and sex-dependent differences in behavior and CN plasticity.
ContributorsLyle, Tristan (Author) / Verpeut, Jessica (Thesis advisor) / Sanabria, Federico (Committee member) / Newbern, Jason (Committee member) / Arizona State University (Publisher)
Created2024