Matching Items (134)
Filtering by

Clear all filters

149991-Thumbnail Image.png
Description
With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive sensing and sparse representation algorithms. This thesis assays some applications

With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive sensing and sparse representation algorithms. This thesis assays some applications of compressive sensing and sparse representation with regards to image enhancement, restoration and classication. The first application deals with image Super-Resolution through compressive sensing based sparse representation. A novel framework is developed for understanding and analyzing some of the implications of compressive sensing in reconstruction and recovery of an image through raw-sampled and trained dictionaries. Properties of the projection operator and the dictionary are examined and the corresponding results presented. In the second application a novel technique for representing image classes uniquely in a high-dimensional space for image classification is presented. In this method, design and implementation strategy of the image classification system through unique affine sparse codes is presented, which leads to state of the art results. This further leads to analysis of some of the properties attributed to these unique sparse codes. In addition to obtaining these codes, a strong classier is designed and implemented to boost the results obtained. Evaluation with publicly available datasets shows that the proposed method outperforms other state of the art results in image classication. The final part of the thesis deals with image denoising with a novel approach towards obtaining high quality denoised image patches using only a single image. A new technique is proposed to obtain highly correlated image patches through sparse representation, which are then subjected to matrix completion to obtain high quality image patches. Experiments suggest that there may exist a structure within a noisy image which can be exploited for denoising through a low-rank constraint.
ContributorsKulkarni, Naveen (Author) / Li, Baoxin (Thesis advisor) / Ye, Jieping (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
149901-Thumbnail Image.png
Description
Query Expansion is a functionality of search engines that suggest a set of related queries for a user issued keyword query. In case of exploratory or ambiguous keyword queries, the main goal of the user would be to identify and select a specific category of query results among different categorical

Query Expansion is a functionality of search engines that suggest a set of related queries for a user issued keyword query. In case of exploratory or ambiguous keyword queries, the main goal of the user would be to identify and select a specific category of query results among different categorical options, in order to narrow down the search and reach the desired result. Typical corpus-driven keyword query expansion approaches return popular words in the results as expanded queries. These empirical methods fail to cover all semantics of categories present in the query results. More importantly these methods do not consider the semantic relationship between the keywords featured in an expanded query. Contrary to a normal keyword search setting, these factors are non-trivial in an exploratory and ambiguous query setting where the user's precise discernment of different categories present in the query results is more important for making subsequent search decisions. In this thesis, I propose a new framework for keyword query expansion: generating a set of queries that correspond to the categorization of original query results, which is referred as Categorizing query expansion. Two approaches of algorithms are proposed, one that performs clustering as pre-processing step and then generates categorizing expanded queries based on the clusters. The other category of algorithms handle the case of generating quality expanded queries in the presence of imperfect clusters.
ContributorsNatarajan, Sivaramakrishnan (Author) / Chen, Yi (Thesis advisor) / Candan, Selcuk (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
149803-Thumbnail Image.png
Description
With the advent of technologies such as web services, service oriented architecture and cloud computing, modern organizations have to deal with policies such as Firewall policies to secure the networks, XACML (eXtensible Access Control Markup Language) policies for controlling the access to critical information as well as resources. Management of

With the advent of technologies such as web services, service oriented architecture and cloud computing, modern organizations have to deal with policies such as Firewall policies to secure the networks, XACML (eXtensible Access Control Markup Language) policies for controlling the access to critical information as well as resources. Management of these policies is an extremely important task in order to avoid unintended security leakages via illegal accesses, while maintaining proper access to services for legitimate users. Managing and maintaining access control policies manually over long period of time is an error prone task due to their inherent complex nature. Existing tools and mechanisms for policy management use different approaches for different types of policies. This research thesis represents a generic framework to provide an unified approach for policy analysis and management of different types of policies. Generic approach captures the common semantics and structure of different access control policies with the notion of policy ontology. Policy ontology representation is then utilized for effectively analyzing and managing the policies. This thesis also discusses a proof-of-concept implementation of the proposed generic framework and demonstrates how efficiently this unified approach can be used for analysis and management of different types of access control policies.
ContributorsKulkarni, Ketan (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2011
149858-Thumbnail Image.png
Description
This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large,

This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large, linearly increasing ciphertext. The proposed CCP-ABE dramatically reduces the ciphertext to small, constant size. This is the first existing ABE scheme that achieves constant ciphertext size. Also, the proposed CCP-ABE scheme is fully collusion-resistant such that users can not combine their attributes to elevate their decryption capacity. Next step, efficient ABE schemes are applied to construct optimal group communication schemes and broadcast encryption schemes. An attribute based Optimal Group Key (OGK) management scheme that attains communication-storage optimality without collusion vulnerability is presented. Then, a novel broadcast encryption model: Attribute Based Broadcast Encryption (ABBE) is introduced, which exploits the many-to-many nature of attributes to dramatically reduce the storage complexity from linear to logarithm and enable expressive attribute based access policies. The privacy issues are also considered and addressed in ABSS. Firstly, a hidden policy based ABE schemes is proposed to protect receivers' privacy by hiding the access policy. Secondly,a new concept: Gradual Identity Exposure (GIE) is introduced to address the restrictions of hidden policy based ABE schemes. GIE's approach is to reveal the receivers' information gradually by allowing ciphertext recipients to decrypt the message using their possessed attributes one-by-one. If the receiver does not possess one attribute in this procedure, the rest of attributes are still hidden. Compared to hidden-policy based solutions, GIE provides significant performance improvement in terms of reducing both computation and communication overhead. Last but not least, ABSS are incorporated into the mobile cloud computing scenarios. In the proposed secure mobile cloud data management framework, the light weight mobile devices can securely outsource expensive ABE operations and data storage to untrusted cloud service providers. The reported scheme includes two components: (1) a Cloud-Assisted Attribute-Based Encryption/Decryption (CA-ABE) scheme and (2) An Attribute-Based Data Storage (ABDS) scheme that achieves information theoretical optimality.
ContributorsZhou, Zhibin (Author) / Huang, Dijiang (Thesis advisor) / Yau, Sik-Sang (Committee member) / Ahn, Gail-Joon (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2011
150244-Thumbnail Image.png
Description
A statement appearing in social media provides a very significant challenge for determining the provenance of the statement. Provenance describes the origin, custody, and ownership of something. Most statements appearing in social media are not published with corresponding provenance data. However, the same characteristics that make the social media environment

A statement appearing in social media provides a very significant challenge for determining the provenance of the statement. Provenance describes the origin, custody, and ownership of something. Most statements appearing in social media are not published with corresponding provenance data. However, the same characteristics that make the social media environment challenging, including the massive amounts of data available, large numbers of users, and a highly dynamic environment, provide unique and untapped opportunities for solving the provenance problem for social media. Current approaches for tracking provenance data do not scale for online social media and consequently there is a gap in provenance methodologies and technologies providing exciting research opportunities. The guiding vision is the use of social media information itself to realize a useful amount of provenance data for information in social media. This departs from traditional approaches for data provenance which rely on a central store of provenance information. The contemporary online social media environment is an enormous and constantly updated "central store" that can be mined for provenance information that is not readily made available to the average social media user. This research introduces an approach and builds a foundation aimed at realizing a provenance data capability for social media users that is not accessible today.
ContributorsBarbier, Geoffrey P (Author) / Liu, Huan (Thesis advisor) / Bell, Herbert (Committee member) / Li, Baoxin (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
150190-Thumbnail Image.png
Description
Sparse learning is a technique in machine learning for feature selection and dimensionality reduction, to find a sparse set of the most relevant features. In any machine learning problem, there is a considerable amount of irrelevant information, and separating relevant information from the irrelevant information has been a topic of

Sparse learning is a technique in machine learning for feature selection and dimensionality reduction, to find a sparse set of the most relevant features. In any machine learning problem, there is a considerable amount of irrelevant information, and separating relevant information from the irrelevant information has been a topic of focus. In supervised learning like regression, the data consists of many features and only a subset of the features may be responsible for the result. Also, the features might require special structural requirements, which introduces additional complexity for feature selection. The sparse learning package, provides a set of algorithms for learning a sparse set of the most relevant features for both regression and classification problems. Structural dependencies among features which introduce additional requirements are also provided as part of the package. The features may be grouped together, and there may exist hierarchies and over- lapping groups among these, and there may be requirements for selecting the most relevant groups among them. In spite of getting sparse solutions, the solutions are not guaranteed to be robust. For the selection to be robust, there are certain techniques which provide theoretical justification of why certain features are selected. The stability selection, is a method for feature selection which allows the use of existing sparse learning methods to select the stable set of features for a given training sample. This is done by assigning probabilities for the features: by sub-sampling the training data and using a specific sparse learning technique to learn the relevant features, and repeating this a large number of times, and counting the probability as the number of times a feature is selected. Cross-validation which is used to determine the best parameter value over a range of values, further allows to select the best parameter value. This is done by selecting the parameter value which gives the maximum accuracy score. With such a combination of algorithms, with good convergence guarantees, stable feature selection properties and the inclusion of various structural dependencies among features, the sparse learning package will be a powerful tool for machine learning research. Modular structure, C implementation, ATLAS integration for fast linear algebraic subroutines, make it one of the best tool for a large sparse setting. The varied collection of algorithms, support for group sparsity, batch algorithms, are a few of the notable functionality of the SLEP package, and these features can be used in a variety of fields to infer relevant elements. The Alzheimer Disease(AD) is a neurodegenerative disease, which gradually leads to dementia. The SLEP package is used for feature selection for getting the most relevant biomarkers from the available AD dataset, and the results show that, indeed, only a subset of the features are required to gain valuable insights.
ContributorsThulasiram, Ramesh (Author) / Ye, Jieping (Thesis advisor) / Xue, Guoliang (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
150111-Thumbnail Image.png
Description
Finding the optimal solution to a problem with an enormous search space can be challenging. Unless a combinatorial construction technique is found that also guarantees the optimality of the resulting solution, this could be an infeasible task. If such a technique is unavailable, different heuristic methods are generally used to

Finding the optimal solution to a problem with an enormous search space can be challenging. Unless a combinatorial construction technique is found that also guarantees the optimality of the resulting solution, this could be an infeasible task. If such a technique is unavailable, different heuristic methods are generally used to improve the upper bound on the size of the optimal solution. This dissertation presents an alternative method which can be used to improve a solution to a problem rather than construct a solution from scratch. Necessity analysis, which is the key to this approach, is the process of analyzing the necessity of each element in a solution. The post-optimization algorithm presented here utilizes the result of the necessity analysis to improve the quality of the solution by eliminating unnecessary objects from the solution. While this technique could potentially be applied to different domains, this dissertation focuses on k-restriction problems, where a solution to the problem can be presented as an array. A scalable post-optimization algorithm for covering arrays is described, which starts from a valid solution and performs necessity analysis to iteratively improve the quality of the solution. It is shown that not only can this technique improve upon the previously best known results, it can also be added as a refinement step to any construction technique and in most cases further improvements are expected. The post-optimization algorithm is then modified to accommodate every k-restriction problem; and this generic algorithm can be used as a starting point to create a reasonable sized solution for any such problem. This generic algorithm is then further refined for hash family problems, by adding a conflict graph analysis to the necessity analysis phase. By recoloring the conflict graphs a new degree of flexibility is explored, which can further improve the quality of the solution.
ContributorsNayeri, Peyman (Author) / Colbourn, Charles (Thesis advisor) / Konjevod, Goran (Thesis advisor) / Sen, Arunabha (Committee member) / Stanzione Jr, Daniel (Committee member) / Arizona State University (Publisher)
Created2011
150093-Thumbnail Image.png
Description
Action language C+ is a formalism for describing properties of actions, which is based on nonmonotonic causal logic. The definite fragment of C+ is implemented in the Causal Calculator (CCalc), which is based on the reduction of nonmonotonic causal logic to propositional logic. This thesis describes the language

Action language C+ is a formalism for describing properties of actions, which is based on nonmonotonic causal logic. The definite fragment of C+ is implemented in the Causal Calculator (CCalc), which is based on the reduction of nonmonotonic causal logic to propositional logic. This thesis describes the language of CCalc in terms of answer set programming (ASP), based on the translation of nonmonotonic causal logic to formulas under the stable model semantics. I designed a standard library which describes the constructs of the input language of CCalc in terms of ASP, allowing a simple modular method to represent CCalc input programs in the language of ASP. Using the combination of system F2LP and answer set solvers, this method achieves functionality close to that of CCalc while taking advantage of answer set solvers to yield efficient computation that is orders of magnitude faster than CCalc for many benchmark examples. In support of this, I created an automated translation system Cplus2ASP that implements the translation and encoding method and automatically invokes the necessary software to solve the translated input programs.
ContributorsCasolary, Michael (Author) / Lee, Joohyung (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Baral, Chitta (Committee member) / Arizona State University (Publisher)
Created2011
150148-Thumbnail Image.png
Description
In order to catch the smartest criminals in the world, digital forensics examiners need a means of collaborating and sharing information with each other and outside experts that is not prohibitively difficult. However, standard operating procedures and the rules of evidence generally disallow the use of the collaboration software and

In order to catch the smartest criminals in the world, digital forensics examiners need a means of collaborating and sharing information with each other and outside experts that is not prohibitively difficult. However, standard operating procedures and the rules of evidence generally disallow the use of the collaboration software and techniques that are currently available because they do not fully adhere to the dictated procedures for the handling, analysis, and disclosure of items relating to cases. The aim of this work is to conceive and design a framework that provides a completely new architecture that 1) can perform fundamental functions that are common and necessary to forensic analyses, and 2) is structured such that it is possible to include collaboration-facilitating components without changing the way users interact with the system sans collaboration. This framework is called the Collaborative Forensic Framework (CUFF). CUFF is constructed from four main components: Cuff Link, Storage, Web Interface, and Analysis Block. With the Cuff Link acting as a mediator between components, CUFF is flexible in both the method of deployment and the technologies used in implementation. The details of a realization of CUFF are given, which uses a combination of Java, the Google Web Toolkit, Django with Apache for a RESTful web service, and an Ubuntu Enterprise Cloud using Eucalyptus. The functionality of CUFF's components is demonstrated by the integration of an acquisition script designed for Android OS-based mobile devices that use the YAFFS2 file system. While this work has obvious application to examination labs which work under the mandate of judicial or investigative bodies, security officers at any organization would benefit from the improved ability to cooperate in electronic discovery efforts and internal investigations.
ContributorsMabey, Michael Kent (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2011
152278-Thumbnail Image.png
Description
The digital forensics community has neglected email forensics as a process, despite the fact that email remains an important tool in the commission of crime. Current forensic practices focus mostly on that of disk forensics, while email forensics is left as an analysis task stemming from that practice. As there

The digital forensics community has neglected email forensics as a process, despite the fact that email remains an important tool in the commission of crime. Current forensic practices focus mostly on that of disk forensics, while email forensics is left as an analysis task stemming from that practice. As there is no well-defined process to be used for email forensics the comprehensiveness, extensibility of tools, uniformity of evidence, usefulness in collaborative/distributed environments, and consistency of investigations are hindered. At present, there exists little support for discovering, acquiring, and representing web-based email, despite its widespread use. To remedy this, a systematic process which includes discovering, acquiring, and representing web-based email for email forensics which is integrated into the normal forensic analysis workflow, and which accommodates the distinct characteristics of email evidence will be presented. This process focuses on detecting the presence of non-obvious artifacts related to email accounts, retrieving the data from the service provider, and representing email in a well-structured format based on existing standards. As a result, developers and organizations can collaboratively create and use analysis tools that can analyze email evidence from any source in the same fashion and the examiner can access additional data relevant to their forensic cases. Following, an extensible framework implementing this novel process-driven approach has been implemented in an attempt to address the problems of comprehensiveness, extensibility, uniformity, collaboration/distribution, and consistency within forensic investigations involving email evidence.
ContributorsPaglierani, Justin W (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Santanam, Raghu T (Committee member) / Arizona State University (Publisher)
Created2013