Matching Items (99)
Filtering by

Clear all filters

171740-Thumbnail Image.png
Description
An important objective of AI is to understand real-world observations and build up interactive communication with people. The ability to interpret and react to the perception reveals the important necessity of developing such a system across both the modalities of Vision (V) and Language (L). Although there have been massive

An important objective of AI is to understand real-world observations and build up interactive communication with people. The ability to interpret and react to the perception reveals the important necessity of developing such a system across both the modalities of Vision (V) and Language (L). Although there have been massive efforts on various VL tasks, e.g., Image/Video Captioning, Visual Question Answering, and Textual Grounding, very few of them focus on building the VL models with increased efficiency under real-world scenarios. The main focus of this dissertation is to comprehensively investigate the very uncharted efficient VL learning, aiming to build lightweight, data-efficient, and real-world applicable VL models. The proposed studies in this dissertation take three primary aspects into account when it comes to efficient VL, 1). Data Efficiency: collecting task-specific annotations is prohibitively expensive and so manual labor is not always attainable. Techniques are developed to assist the VL learning from implicit supervision, i.e., in a weakly- supervised fashion. 2). Continuing from that, efficient representation learning is further explored with increased scalability, leveraging a large image-text corpus without task-specific annotations. In particular, the knowledge distillation technique is studied for generic Representation Learning which proves to bring substantial performance gain to the regular representation learning schema. 3). Architectural Efficiency. Deploying the VL model on edge devices is notoriously challenging due to their cumbersome architectures. To further extend these advancements to the real world, a novel efficient VL architecture is designed to tackle the inference bottleneck and the inconvenient two-stage training. Extensive discussions have been conducted on several critical aspects that prominently influence the performances of compact VL models.
ContributorsFang, Zhiyuan (Author) / Yang, Yezhou (Thesis advisor) / Baral, Chitta (Committee member) / Liu, Huan (Committee member) / Liu, Zicheng (Committee member) / Arizona State University (Publisher)
Created2022
171925-Thumbnail Image.png
Description
The problem of monitoring complex networks for the detection of anomalous behavior is well known. Sensors are usually deployed for the purpose of monitoring these networks for anomalies and Sensor Placement Optimization (SPO) is the problem of determining where these sensors should be placed (deployed) in the network. Prior works

The problem of monitoring complex networks for the detection of anomalous behavior is well known. Sensors are usually deployed for the purpose of monitoring these networks for anomalies and Sensor Placement Optimization (SPO) is the problem of determining where these sensors should be placed (deployed) in the network. Prior works have utilized the well known Set Cover formulation in order to determine the locations where sensors should be placed in the network, so that anomalies can be effectively detected. However, such works cannot be utilized to address the problem when the objective is to not only detect the presence of anomalies, but also to detect (distinguish) the source(s) of the detected anomalies, i.e., uniquely monitoring the network. In this dissertation, I attempt to fill in this gap by utilizing the mathematical concept of Identifying Codes and illustrating how it not only can overcome the aforementioned limitation, but also it, and its variants, can be utilized to monitor complex networks modeled from multiple domains. Over the course of this dissertation, I make key contributions which further enhance the efficacy and applicability of Identifying Codes as a monitoring strategy. First, I show how Identifying Codes are superior to not only the Set Cover formulation but also standard graph centrality metrics, for the purpose of uniquely monitoring complex networks. Second, I study novel problems such as the budget constrained Identifying Code, scalable Identifying Code, robust Identifying Code etc., and present algorithms and results for the respective problems. Third, I present useful Identifying Code results for restricted graph classes such as Unit Interval Bigraphs and Unit Disc Bigraphs. Finally, I show the universality of Identifying Codes by applying it to multiple domains.
ContributorsBasu, Kaustav (Author) / Sen, Arunabha (Thesis advisor) / Davulcu, Hasan (Committee member) / Liu, Huan (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2022
171809-Thumbnail Image.png
Description

Data integration involves the reconciliation of data from diverse data sources in order to obtain a unified data repository, upon which an end user such as a data analyst can run analytics sessions to explore the data and obtain useful insights. Supervised Machine Learning (ML) for data integration tasks such

Data integration involves the reconciliation of data from diverse data sources in order to obtain a unified data repository, upon which an end user such as a data analyst can run analytics sessions to explore the data and obtain useful insights. Supervised Machine Learning (ML) for data integration tasks such as ontology (schema) or entity (instance) matching requires several training examples in terms of manually curated, pre-labeled matching and non-matching schema concept or entity pairs which are hard to obtain. On similar lines, an analytics system without predictive capabilities about the impending workload can incur huge querying latencies, while leaving the onus of understanding the underlying database schema and writing a meaningful query at every step during a data exploration session on the user. In this dissertation, I will describe the human-in-the-loop Machine Learning (ML) systems that I have built towards data integration and predictive analytics. I alleviate the need for extensive prior labeling by utilizing active learning (AL) for dataintegration. In each AL iteration, I detect the unlabeled entity or schema concept pairs that would strengthen the ML classifier and selectively query the human oracle for such labels in a budgeted fashion. Thus, I make use of human assistance for ML-based data integration. On the other hand, when the human is an end user exploring data through Online Analytical Processing (OLAP) queries, my goal is to pro-actively assist the human by predicting the top-K next queries that s/he is likely to be interested in. I will describe my proposed SQL-predictor, a Business Intelligence (BI) query predictor and a geospatial query cardinality estimator with an emphasis on schema abstraction, query representation and how I adapt the ML models for these tasks. For each system, I will discuss the evaluation metrics and how the proposed systems compare to the state-of-the-art baselines on multiple datasets and query workloads.

ContributorsMeduri, Venkata Vamsikrishna (Author) / Sarwat, Mohamed (Thesis advisor) / Bryan, Chris (Committee member) / Liu, Huan (Committee member) / Ozcan, Fatma (Committee member) / Popa, Lucian (Committee member) / Arizona State University (Publisher)
Created2022
171813-Thumbnail Image.png
Description
This dissertation investigates the problem of efficiently and effectively prioritizing a vulnerability risk in a computer networking system. Vulnerability prioritization is one of the most challenging issues in vulnerability management, which affects allocating preventive and defensive resources in a computer networking system. Due to the large number of identified vulnerabilities,

This dissertation investigates the problem of efficiently and effectively prioritizing a vulnerability risk in a computer networking system. Vulnerability prioritization is one of the most challenging issues in vulnerability management, which affects allocating preventive and defensive resources in a computer networking system. Due to the large number of identified vulnerabilities, it is very challenging to remediate them all in a timely fashion. Thus, an efficient and effective vulnerability prioritization framework is required. To deal with this challenge, this dissertation proposes a novel risk-based vulnerability prioritization framework that integrates the recent artificial intelligence techniques (i.e., neuro-symbolic computing and logic reasoning). The proposed work enhances the vulnerability management process by prioritizing vulnerabilities with high risk by refining the initial risk assessment with the network constraints. This dissertation is organized as follows. The first part of this dissertation presents the overview of the proposed risk-based vulnerability prioritization framework, which contains two stages. The second part of the dissertation investigates vulnerability risk features in a computer networking system. The third part proposes the first stage of this framework, a vulnerability risk assessment model. The proposed assessment model captures the pattern of vulnerability risk features to provide a more comprehensive risk assessment for a vulnerability. The fourth part proposes the second stage of this framework, a vulnerability prioritization reasoning engine. This reasoning engine derives network constraints from interactions between vulnerabilities and network environment elements based on network and system setups. This proposed framework assesses a vulnerability in a computer networking system based on its actual security impact by refining the initial risk assessment with the network constraints.
ContributorsZeng, Zhen (Author) / Xue, Guoliang (Thesis advisor) / Liu, Huan (Committee member) / Zhao, Ming (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2022
193380-Thumbnail Image.png
Description
Large Language Models (LLMs) have displayed impressive capabilities in handling tasks that require few demonstration examples, making them effective few-shot learn- ers. Despite their potential, LLMs face challenges when it comes to addressing com- plex real-world tasks that involve multiple modalities or reasoning steps. For example, predicting cancer patients’ survival

Large Language Models (LLMs) have displayed impressive capabilities in handling tasks that require few demonstration examples, making them effective few-shot learn- ers. Despite their potential, LLMs face challenges when it comes to addressing com- plex real-world tasks that involve multiple modalities or reasoning steps. For example, predicting cancer patients’ survival period based on clinical data, cell slides, and ge- nomics poses significant logistical complexities. Although several approaches have been proposed to tackle these challenges, they often fall short in achieving promising performance due to their inability to consider all modalities simultaneously or account for missing modalities, variations in modalities, and the integration of multi-modal data, ultimately compromising their effectiveness.This thesis proposes a novel approach for multi-modal tumor survival prediction to address these limitations. Taking inspiration from recent advancements in LLMs, particularly Mixture of Experts (MoE)-based models, a graph-guided MoE framework is introduced. This framework utilizes a graph structure to manage the predictions effectively and combines multiple models to enhance predictive power. Rather than training a single foundation model for end-to-end survival prediction, the approach leverages a MOE-guided ensemble to manage model callings as tools automatically. By leveraging the strengths of existing models and guiding them through a MOE framework, the aim is to achieve better performance and more accurate predictions in complex real-world tasks. Experiments and analysis on the TCGA-LUAD dataset show improved performance over the individual modal and vanilla ensemble models.
ContributorsMathavan, Hirthik (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Choi, YooJung (Committee member) / Arizona State University (Publisher)
Created2024
168720-Thumbnail Image.png
Description
Artificial intelligence (AI) has the potential to drive us towards a future in which all of humanity flourishes. It also comes with substantial risks of oppression and calamity. For example, social media platforms have knowingly and surreptitiously promoted harmful content, e.g., the rampant instances of disinformation and hate speech. Machine

Artificial intelligence (AI) has the potential to drive us towards a future in which all of humanity flourishes. It also comes with substantial risks of oppression and calamity. For example, social media platforms have knowingly and surreptitiously promoted harmful content, e.g., the rampant instances of disinformation and hate speech. Machine learning algorithms designed for combating hate speech were also found biased against underrepresented and disadvantaged groups. In response, researchers and organizations have been working to publish principles and regulations for the responsible use of AI. However, these conceptual principles also need to be turned into actionable algorithms to materialize AI for good. The broad aim of my research is to design AI systems that responsibly serve users and develop applications with social impact. This dissertation seeks to develop the algorithmic solutions for Socially Responsible AI (SRAI), a systematic framework encompassing the responsible AI principles and algorithms, and the responsible use of AI. In particular, it first introduces an interdisciplinary definition of SRAI and the AI responsibility pyramid, in which four types of AI responsibilities are described. It then elucidates the purpose of SRAI: how to bridge from the conceptual definitions to responsible AI practice through the three human-centered operations -- to Protect and Inform users, and Prevent negative consequences. They are illustrated in the social media domain given that social media has revolutionized how people live but has also contributed to the rise of many societal issues. The three representative tasks for each dimension are cyberbullying detection, disinformation detection and dissemination, and unintended bias mitigation. The means of SRAI is to develop responsible AI algorithms. Many issues (e.g., discrimination and generalization) can arise when AI systems are trained to improve accuracy without knowing the underlying causal mechanism. Causal inference, therefore, is intrinsically related to understanding and resolving these challenging issues in AI. As a result, this dissertation also seeks to gain an in-depth understanding of AI by looking into the precise relationships between causes and effects. For illustration, it introduces a recent work that applies deep learning to estimating causal effects and shows that causal learning algorithms can outperform traditional methods.
ContributorsCheng, Lu (Author) / Liu, Huan (Thesis advisor) / Varshney, Kush R. (Committee member) / Silva, Yasin N. (Committee member) / Wu, Carole-Jean (Committee member) / Candan, Kasim S. (Committee member) / Arizona State University (Publisher)
Created2022
187374-Thumbnail Image.png
Description
Graph-structured data, ranging from social networks to financial transaction networks, from citation networks to gene regulatory networks, have been widely used for modeling a myriad of real-world systems. As a prevailing model architecture to model graph-structured data, graph neural networks (GNNs) has drawn much attention in both academic and

Graph-structured data, ranging from social networks to financial transaction networks, from citation networks to gene regulatory networks, have been widely used for modeling a myriad of real-world systems. As a prevailing model architecture to model graph-structured data, graph neural networks (GNNs) has drawn much attention in both academic and industrial communities in the past decades. Despite their success in different graph learning tasks, existing methods usually rely on learning from ``big'' data, requiring a large amount of labeled data for model training. However, it is common that real-world graphs are associated with ``small'' labeled data as data annotation and labeling on graphs is always time and resource-consuming. Therefore, it is imperative to investigate graph machine learning (Graph ML) with low-cost human supervision for low-resource settings where limited or even no labeled data is available. This dissertation investigates a new research field -- Data-Efficient Graph Learning, which aims to push forward the performance boundary of graph machine learning (Graph ML) models with different kinds of low-cost supervision signals. To achieve this goal, a series of studies are conducted for solving different data-efficient graph learning problems, including graph few-shot learning, graph weakly-supervised learning, and graph self-supervised learning.
ContributorsDing, Kaize (Author) / Liu, Huan (Thesis advisor) / Xue, Guoliang (Committee member) / Yang, Yezhou (Committee member) / Caverlee, James (Committee member) / Arizona State University (Publisher)
Created2023
193452-Thumbnail Image.png
Description
Social media platforms have become widely used for open communication, yet their lack of moderation has led to the proliferation of harmful content, including hate speech. Manual monitoring of such vast amounts of user-generated data is impractical, thus necessitating automated hate speech detection methods. Pre-trained language models have been proven

Social media platforms have become widely used for open communication, yet their lack of moderation has led to the proliferation of harmful content, including hate speech. Manual monitoring of such vast amounts of user-generated data is impractical, thus necessitating automated hate speech detection methods. Pre-trained language models have been proven to possess strong base capabilities, which not only excel at in-distribution language modeling but also show powerful abilities in out-of-distribution language modeling, transfer learning and few-shot learning. However, these models operate as complex function approximators, mapping input text to a hate speech classification, without providing any insights into the reasoning behind their predictions. Hence, existing methods often lack transparency, hindering their effectiveness, particularly in sensitive content moderation contexts. Recent efforts have been made to integrate their capabilities with large language models like ChatGPT and Llama2, which exhibit reasoning capabilities and broad knowledge utilization. This thesis explores leveraging the reasoning abilities of large language models to enhance the interpretability of hate speech detection. A novel framework is proposed that utilizes state-of-the-art Large Language Models (LLMs) to extract interpretable rationales from input text, highlighting key phrases or sentences relevant to hate speech classification. By incorporating these rationale features into a hate speech classifier, the framework inherently provides transparent and interpretable results. This approach combines the language understanding prowess of LLMs with the discriminative power of advanced hate speech classifiers, offering a promising solution to the challenge of interpreting automated hate speech detection models.
ContributorsNirmal, Ayushi (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Wei, Hua (Committee member) / Arizona State University (Publisher)
Created2024
193546-Thumbnail Image.png
Description
In the age of artificial intelligence, Machine Learning (ML) has become a pervasive force, impacting countless aspects of our lives. As ML’s influence expands, concerns about its reliability and trustworthiness have intensified, with security and robustness emerging as significant challenges. For instance, it has been demonstrated that slight perturbations to

In the age of artificial intelligence, Machine Learning (ML) has become a pervasive force, impacting countless aspects of our lives. As ML’s influence expands, concerns about its reliability and trustworthiness have intensified, with security and robustness emerging as significant challenges. For instance, it has been demonstrated that slight perturbations to a stop sign can cause ML classifiers to misidentify it as a speed limit sign, raising concerns about whether ML algorithms are suitable for real-world deployments. To tackle these issues, Responsible Machine Learning (Responsible ML) has emerged with a clear mission: to develop secure and robust ML algorithms. This dissertation aims to develop Responsible Machine Learning algorithms under real-world constraints. Specifically, recognizing the role of adversarial attacks in exposing security vulnerabilities and robustifying the ML methods, it lays down the foundation of Responsible ML by outlining a novel taxonomy of adversarial attacks within real-world settings, categorizing them into black-box target-specific, and target-agnostic attacks. Subsequently, it proposes potent adversarial attacks in each category, aiming to obtain effectiveness and efficiency. Transcending conventional boundaries, it then introduces the notion of causality into Responsible ML (a.k.a., Causal Responsible ML), presenting the causal adversarial attack. This represents the first principled framework to explain the transferability of adversarial attacks to unknown models by identifying their common source of vulnerabilities, thereby exposing the pinnacle of threat and vulnerability: conducting successful attacks on any model with no prior knowledge. Finally, acknowledging the surge of Generative AI, this dissertation explores Responsible ML for Generative AI. It introduces a novel adversarial attack that unveils their adversarial vulnerabilities and devises a strong defense mechanism to bolster the models’ robustness against potential attacks.
ContributorsMoraffah, Raha (Author) / Liu, Huan (Thesis advisor) / Yang, Yezhou (Committee member) / Xiao, Chaowei (Committee member) / Turaga, Pavan (Committee member) / Carley, Kathleen (Committee member) / Arizona State University (Publisher)
Created2024
156862-Thumbnail Image.png
Description
Teams are increasingly indispensable to achievements in any organizations. Despite the organizations' substantial dependency on teams, fundamental knowledge about the conduct of team-enabled operations is lacking, especially at the {\it social, cognitive} and {\it information} level in relation to team performance and network dynamics. The goal of this dissertation is

Teams are increasingly indispensable to achievements in any organizations. Despite the organizations' substantial dependency on teams, fundamental knowledge about the conduct of team-enabled operations is lacking, especially at the {\it social, cognitive} and {\it information} level in relation to team performance and network dynamics. The goal of this dissertation is to create new instruments to {\it predict}, {\it optimize} and {\it explain} teams' performance in the context of composite networks (i.e., social-cognitive-information networks).

Understanding the dynamic mechanisms that drive the success of high-performing teams can provide the key insights into building the best teams and hence lift the productivity and profitability of the organizations. For this purpose, novel predictive models to forecast the long-term performance of teams ({\it point prediction}) as well as the pathway to impact ({\it trajectory prediction}) have been developed. A joint predictive model by exploring the relationship between team level and individual level performances has also been proposed.

For an existing team, it is often desirable to optimize its performance through expanding the team by bringing a new team member with certain expertise, or finding a new candidate to replace an existing under-performing member. I have developed graph kernel based performance optimization algorithms by considering both the structural matching and skill matching to solve the above enhancement scenarios. I have also worked towards real time team optimization by leveraging reinforcement learning techniques.

With the increased complexity of the machine learning models for predicting and optimizing teams, it is critical to acquire a deeper understanding of model behavior. For this purpose, I have investigated {\em explainable prediction} -- to provide explanation behind a performance prediction and {\em explainable optimization} -- to give reasons why the model recommendations are good candidates for certain enhancement scenarios.
ContributorsLi, Liangyue (Author) / Tong, Hanghang (Thesis advisor) / Baral, Chitta (Committee member) / Liu, Huan (Committee member) / Buchler, Norbou (Committee member) / Arizona State University (Publisher)
Created2018