Matching Items (64)
Filtering by

Clear all filters

156236-Thumbnail Image.png
Description
Reasoning about actions forms the basis of many tasks such as prediction, planning, and diagnosis in a dynamic domain. Within the reasoning about actions community, a broad class of languages, called action languages, has been developed together with a methodology for their use in representing and reasoning about dynamic domains.

Reasoning about actions forms the basis of many tasks such as prediction, planning, and diagnosis in a dynamic domain. Within the reasoning about actions community, a broad class of languages, called action languages, has been developed together with a methodology for their use in representing and reasoning about dynamic domains. With a few notable exceptions, the focus of these efforts has largely centered around single-agent systems. Agents rarely operate in a vacuum however, and almost in parallel, substantial work has been done within the dynamic epistemic logic community towards understanding how the actions of an agent may effect not just his own knowledge and/or beliefs, but those of his fellow agents as well. What is less understood by both communities is how to represent and reason about both the direct and indirect effects of both ontic and epistemic actions within a multi-agent setting. This dissertation presents ongoing research towards a framework for representing and reasoning about dynamic multi-agent domains involving both classes of actions.

The contributions of this work are as follows: the formulation of a precise mathematical model of a dynamic multi-agent domain based on the notion of a transition diagram; the development of the multi-agent action languages mA+ and mAL based upon this model, as well as preliminary investigations of their properties and implementations via logic programming under the answer set semantics; precise formulations of the temporal projection, and planning problems within a multi-agent context; and an investigation of the application of the proposed approach to the representation of, and reasoning about, scenarios involving the modalities of knowledge and belief.
ContributorsGelfond, Gregory (Author) / Baral, Chitta (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Lee, Joohyung (Committee member) / Moss, Larry (Committee member) / Cao Son, Tran (Committee member) / Arizona State University (Publisher)
Created2018
156586-Thumbnail Image.png
Description
Image Understanding is a long-established discipline in computer vision, which encompasses a body of advanced image processing techniques, that are used to locate (“where”), characterize and recognize (“what”) objects, regions, and their attributes in the image. However, the notion of “understanding” (and the goal of artificial intelligent machines) goes beyond

Image Understanding is a long-established discipline in computer vision, which encompasses a body of advanced image processing techniques, that are used to locate (“where”), characterize and recognize (“what”) objects, regions, and their attributes in the image. However, the notion of “understanding” (and the goal of artificial intelligent machines) goes beyond factual recall of the recognized components and includes reasoning and thinking beyond what can be seen (or perceived). Understanding is often evaluated by asking questions of increasing difficulty. Thus, the expected functionalities of an intelligent Image Understanding system can be expressed in terms of the functionalities that are required to answer questions about an image. Answering questions about images require primarily three components: Image Understanding, question (natural language) understanding, and reasoning based on knowledge. Any question, asking beyond what can be directly seen, requires modeling of commonsense (or background/ontological/factual) knowledge and reasoning.

Knowledge and reasoning have seen scarce use in image understanding applications. In this thesis, we demonstrate the utilities of incorporating background knowledge and using explicit reasoning in image understanding applications. We first present a comprehensive survey of the previous work that utilized background knowledge and reasoning in understanding images. This survey outlines the limited use of commonsense knowledge in high-level applications. We then present a set of vision and reasoning-based methods to solve several applications and show that these approaches benefit in terms of accuracy and interpretability from the explicit use of knowledge and reasoning. We propose novel knowledge representations of image, knowledge acquisition methods, and a new implementation of an efficient probabilistic logical reasoning engine that can utilize publicly available commonsense knowledge to solve applications such as visual question answering, image puzzles. Additionally, we identify the need for new datasets that explicitly require external commonsense knowledge to solve. We propose the new task of Image Riddles, which requires a combination of vision, and reasoning based on ontological knowledge; and we collect a sufficiently large dataset to serve as an ideal testbed for vision and reasoning research. Lastly, we propose end-to-end deep architectures that can combine vision, knowledge and reasoning modules together and achieve large performance boosts over state-of-the-art methods.
ContributorsAditya, Somak (Author) / Baral, Chitta (Thesis advisor) / Yang, Yezhou (Thesis advisor) / Aloimonos, Yiannis (Committee member) / Lee, Joohyung (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2018
156602-Thumbnail Image.png
Description
The goal of fact checking is to determine if a given claim holds. A promising ap- proach for this task is to exploit reference information in the form of knowledge graphs (KGs), a structured and formal representation of knowledge with semantic descriptions of entities and relations. KGs are successfully used

The goal of fact checking is to determine if a given claim holds. A promising ap- proach for this task is to exploit reference information in the form of knowledge graphs (KGs), a structured and formal representation of knowledge with semantic descriptions of entities and relations. KGs are successfully used in multiple appli- cations, but the information stored in a KG is inevitably incomplete. In order to address the incompleteness problem, this thesis proposes a new method built on top of recent results in logical rule discovery in KGs called RuDik and a probabilistic extension of answer set programs called LPMLN.

This thesis presents the integration of RuDik which discovers logical rules over a given KG and LPMLN to do probabilistic inference to validate a fact. While automatically discovered rules over a KG are for human selection and revision, they can be turned into LPMLN programs with a minor modification. Leveraging the probabilistic inference in LPMLN, it is possible to (i) derive new information which is not explicitly stored in a KG with a probability associated with it, and (ii) provide supporting facts and rules for interpretable explanations for such decisions.

Also, this thesis presents experiments and results to show that this approach can label claims with high precision. The evaluation of the system also sheds light on the role played by the quality of the given rules and the quality of the KG.
ContributorsPradhan, Anish (Author) / Lee, Joohyung (Thesis advisor) / Baral, Chitta (Committee member) / Papotti, Paolo (Committee member) / Arizona State University (Publisher)
Created2018
156622-Thumbnail Image.png
Description
Reasoning about the activities of cyber threat actors is critical to defend against cyber

attacks. However, this task is difficult for a variety of reasons. In simple terms, it is difficult

to determine who the attacker is, what the desired goals are of the attacker, and how they will

carry out their attacks.

Reasoning about the activities of cyber threat actors is critical to defend against cyber

attacks. However, this task is difficult for a variety of reasons. In simple terms, it is difficult

to determine who the attacker is, what the desired goals are of the attacker, and how they will

carry out their attacks. These three questions essentially entail understanding the attacker’s

use of deception, the capabilities available, and the intent of launching the attack. These

three issues are highly inter-related. If an adversary can hide their intent, they can better

deceive a defender. If an adversary’s capabilities are not well understood, then determining

what their goals are becomes difficult as the defender is uncertain if they have the necessary

tools to accomplish them. However, the understanding of these aspects are also mutually

supportive. If we have a clear picture of capabilities, intent can better be deciphered. If we

understand intent and capabilities, a defender may be able to see through deception schemes.

In this dissertation, I present three pieces of work to tackle these questions to obtain

a better understanding of cyber threats. First, we introduce a new reasoning framework

to address deception. We evaluate the framework by building a dataset from DEFCON

capture-the-flag exercise to identify the person or group responsible for a cyber attack.

We demonstrate that the framework not only handles cases of deception but also provides

transparent decision making in identifying the threat actor. The second task uses a cognitive

learning model to determine the intent – goals of the threat actor on the target system.

The third task looks at understanding the capabilities of threat actors to target systems by

identifying at-risk systems from hacker discussions on darkweb websites. To achieve this

task we gather discussions from more than 300 darkweb websites relating to malicious

hacking.
ContributorsNunes, Eric (Author) / Shakarian, Paulo (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Baral, Chitta (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2018
156862-Thumbnail Image.png
Description
Teams are increasingly indispensable to achievements in any organizations. Despite the organizations' substantial dependency on teams, fundamental knowledge about the conduct of team-enabled operations is lacking, especially at the {\it social, cognitive} and {\it information} level in relation to team performance and network dynamics. The goal of this dissertation is

Teams are increasingly indispensable to achievements in any organizations. Despite the organizations' substantial dependency on teams, fundamental knowledge about the conduct of team-enabled operations is lacking, especially at the {\it social, cognitive} and {\it information} level in relation to team performance and network dynamics. The goal of this dissertation is to create new instruments to {\it predict}, {\it optimize} and {\it explain} teams' performance in the context of composite networks (i.e., social-cognitive-information networks).

Understanding the dynamic mechanisms that drive the success of high-performing teams can provide the key insights into building the best teams and hence lift the productivity and profitability of the organizations. For this purpose, novel predictive models to forecast the long-term performance of teams ({\it point prediction}) as well as the pathway to impact ({\it trajectory prediction}) have been developed. A joint predictive model by exploring the relationship between team level and individual level performances has also been proposed.

For an existing team, it is often desirable to optimize its performance through expanding the team by bringing a new team member with certain expertise, or finding a new candidate to replace an existing under-performing member. I have developed graph kernel based performance optimization algorithms by considering both the structural matching and skill matching to solve the above enhancement scenarios. I have also worked towards real time team optimization by leveraging reinforcement learning techniques.

With the increased complexity of the machine learning models for predicting and optimizing teams, it is critical to acquire a deeper understanding of model behavior. For this purpose, I have investigated {\em explainable prediction} -- to provide explanation behind a performance prediction and {\em explainable optimization} -- to give reasons why the model recommendations are good candidates for certain enhancement scenarios.
ContributorsLi, Liangyue (Author) / Tong, Hanghang (Thesis advisor) / Baral, Chitta (Committee member) / Liu, Huan (Committee member) / Buchler, Norbou (Committee member) / Arizona State University (Publisher)
Created2018
156898-Thumbnail Image.png
Description
Virtual digital assistants are automated software systems which assist humans by understanding natural languages such as English, either in voice or textual form. In recent times, a lot of digital applications have shifted towards providing a user experience using natural language interface. The change is brought up by the degree

Virtual digital assistants are automated software systems which assist humans by understanding natural languages such as English, either in voice or textual form. In recent times, a lot of digital applications have shifted towards providing a user experience using natural language interface. The change is brought up by the degree of ease with which the virtual digital assistants such as Google Assistant and Amazon Alexa can be integrated into your application. These assistants make use of a Natural Language Understanding (NLU) system which acts as an interface to translate unstructured natural language data into a structured form. Such an NLU system uses an intent finding algorithm which gives a high-level idea or meaning of a user query, termed as intent classification. The intent classification step identifies the action(s) that a user wants the assistant to perform. The intent classification step is followed by an entity recognition step in which the entities in the utterance are identified on which the intended action is performed. This step can be viewed as a sequence labeling task which maps an input word sequence into a corresponding sequence of slot labels. This step is also termed as slot filling.

In this thesis, we improve the intent classification and slot filling in the virtual voice agents by automatic data augmentation. Spoken Language Understanding systems face the issue of data sparsity. The reason behind this is that it is hard for a human-created training sample to represent all the patterns in the language. Due to the lack of relevant data, deep learning methods are unable to generalize the Spoken Language Understanding model. This thesis expounds a way to overcome the issue of data sparsity in deep learning approaches on Spoken Language Understanding tasks. Here we have described the limitations in the current intent classifiers and how the proposed algorithm uses existing knowledge bases to overcome those limitations. The method helps in creating a more robust intent classifier and slot filling system.
ContributorsGarg, Prashant (Author) / Baral, Chitta (Thesis advisor) / Kumar, Hemanth (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2018
157311-Thumbnail Image.png
Description
Knowledge Representation (KR) is one of the prominent approaches to Artificial Intelligence (AI) that is concerned with representing knowledge in a form that computer systems can utilize to solve complex problems. Answer Set Programming (ASP), based on the stable model semantics, is a widely-used KR framework that facilitates elegant and

Knowledge Representation (KR) is one of the prominent approaches to Artificial Intelligence (AI) that is concerned with representing knowledge in a form that computer systems can utilize to solve complex problems. Answer Set Programming (ASP), based on the stable model semantics, is a widely-used KR framework that facilitates elegant and efficient representations for many problem domains that require complex reasoning.

However, while ASP is effective on deterministic problem domains, it is not suitable for applications involving quantitative uncertainty, for example, those that require probabilistic reasoning. Furthermore, it is hard to utilize information that can be statistically induced from data with ASP problem modeling.

This dissertation presents the language LP^MLN, which is a probabilistic extension of the stable model semantics with the concept of weighted rules, inspired by Markov Logic. An LP^MLN program defines a probability distribution over "soft" stable models, which may not satisfy all rules, but the more rules with the bigger weights they satisfy, the bigger their probabilities. LP^MLN takes advantage of both ASP and Markov Logic in a single framework, allowing representation of problems that require both logical and probabilistic reasoning in an intuitive and elaboration tolerant way.

This dissertation establishes formal relations between LP^MLN and several other formalisms, discusses inference and weight learning algorithms under LP^MLN, and presents systems implementing the algorithms. LP^MLN systems can be used to compute other languages translatable into LP^MLN.

The advantage of LP^MLN for probabilistic reasoning is illustrated by a probabilistic extension of the action language BC+, called pBC+, defined as a high-level notation of LP^MLN for describing transition systems. Various probabilistic reasoning about transition systems, especially probabilistic diagnosis, can be modeled in pBC+ and computed using LP^MLN systems. pBC+ is further extended with the notion of utility, through a decision-theoretic extension of LP^MLN, and related with Markov Decision Process (MDP) in terms of policy optimization problems. pBC+ can be used to represent (PO)MDP in a succinct and elaboration tolerant way, which enables planning with (PO)MDP algorithms in action domains whose description requires rich KR constructs, such as recursive definitions and indirect effects of actions.
ContributorsWang, Yi (Author) / Lee, Joohyung (Thesis advisor) / Baral, Chitta (Committee member) / Kambhampati, Subbarao (Committee member) / Natarajan, Sriraam (Committee member) / Srivastava, Siddharth (Committee member) / Arizona State University (Publisher)
Created2019
154756-Thumbnail Image.png
Description
There have been extensive research in how news and twitter feeds can affect the outcome of a given stock. However, a majority of this research has studied the short term effects of sentiment with a given stock price. Within this research, I studied the long-term effects of a

There have been extensive research in how news and twitter feeds can affect the outcome of a given stock. However, a majority of this research has studied the short term effects of sentiment with a given stock price. Within this research, I studied the long-term effects of a given stock price using fundamental analysis techniques. Within this research, I collected both sentiment data and fundamental data for Apple Inc., Microsoft Corp., and Peabody Energy Corp. Using a neural network algorithm, I found that sentiment does have an effect on the annual growth of these companies but the fundamentals are more relevant when determining overall growth. The stocks which show more consistent growth hold more importance on the previous year’s stock price but companies which have less consistency in their growth showed more reliance on the revenue growth and sentiment on the overall company and CEO. I discuss how I collected my research data and used a multi-layered perceptron to predict a threshold growth of a given stock. The threshold used for this particular research was 10%. I then showed the prediction of this threshold using my perceptron and afterwards, perform an f anova test on my choice of features. The results showed the fundamentals being the better predictor of stock information but fundamentals came in a close second in several cases, proving sentiment does hold an effect over long term growth.
ContributorsReeves, Tyler Joseph (Author) / Davulcu, Hasan (Thesis advisor) / Baral, Chitta (Committee member) / Cesta, John (Committee member) / Arizona State University (Publisher)
Created2016
154765-Thumbnail Image.png
Description
For the past three decades, the design of an effective strategy for generating poetry that matches that of a human’s creative capabilities and complexities has been an elusive goal in artificial intelligence (AI) and natural language generation (NLG) research, and among linguistic creativity researchers in particular. This thesis presents a

For the past three decades, the design of an effective strategy for generating poetry that matches that of a human’s creative capabilities and complexities has been an elusive goal in artificial intelligence (AI) and natural language generation (NLG) research, and among linguistic creativity researchers in particular. This thesis presents a novel approach to fixed verse poetry generation using neural word embeddings. During the course of generation, a two layered poetry classifier is developed. The first layer uses a lexicon based method to classify poems into types based on form and structure, and the second layer uses a supervised classification method to classify poems into subtypes based on content with an accuracy of 92%. The system then uses a two-layer neural network to generate poetry based on word similarities and word movements in a 50-dimensional vector space.

The verses generated by the system are evaluated using rhyme, rhythm, syllable counts and stress patterns. These computational features of language are considered for generating haikus, limericks and iambic pentameter verses. The generated poems are evaluated using a Turing test on both experts and non-experts. The user study finds that only 38% computer generated poems were correctly identified by nonexperts while 65% of the computer generated poems were correctly identified by experts. Although the system does not pass the Turing test, the results from the Turing test suggest an improvement of over 17% when compared to previous methods which use Turing tests to evaluate poetry generators.
ContributorsMagge, Arjun (Author) / Syrotiuk, Violet R. (Thesis advisor) / Baral, Chitta (Committee member) / Hogue, Cynthia (Committee member) / Bazzi, Rida (Committee member) / Arizona State University (Publisher)
Created2016
154146-Thumbnail Image.png
Description
Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to supply instructors with biology questions, a semantic network approach was

Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to supply instructors with biology questions, a semantic network approach was developed for generating open response biology questions. The generated questions were compared to professional authorized questions.

To boost students’ learning experience, adaptive selection was built on the generated questions. Bayesian Knowledge Tracing was used as embedded assessment of the student’s current competence so that a suitable question could be selected based on the student’s previous performance. A between-subjects experiment with 42 participants was performed, where half of the participants studied with adaptive selected questions and the rest studied with mal-adaptive order of questions. Both groups significantly improved their test scores, and the participants in adaptive group registered larger learning gains than participants in the control group.

To explore the possibility of generating rich instructional feedback for machine-generated questions, a question-paragraph mapping task was identified. Given a set of questions and a list of paragraphs for a textbook, the goal of the task was to map the related paragraphs to each question. An algorithm was developed whose performance was comparable to human annotators.

A multiple-choice question with high quality distractors (incorrect answers) can be pedagogically valuable as well as being much easier to grade than open-response questions. Thus, an algorithm was developed to generate good distractors for multiple-choice questions. The machine-generated multiple-choice questions were compared to human-generated questions in terms of three measures: question difficulty, question discrimination and distractor usefulness. By recruiting 200 participants from Amazon Mechanical Turk, it turned out that the two types of questions performed very closely on all the three measures.
ContributorsZhang, Lishang (Author) / VanLehn, Kurt (Thesis advisor) / Baral, Chitta (Committee member) / Hsiao, Ihan (Committee member) / Wright, Christian (Committee member) / Arizona State University (Publisher)
Created2015