Matching Items (4)
Filtering by

Clear all filters

Description

The following analysis was conducted at the Arizona State University open loop wind tunnel. Two 1/24-th scale NASCAR models were placed in a wind tunnel test section and were adjusted to study drafting that commonly occurs at superspeedway racetracks. The purpose of the experiment was to determine how drafting affects

The following analysis was conducted at the Arizona State University open loop wind tunnel. Two 1/24-th scale NASCAR models were placed in a wind tunnel test section and were adjusted to study drafting that commonly occurs at superspeedway racetracks. The purpose of the experiment was to determine how drafting affects a leading and trailing car through changes in distance. A wind tunnel model was developed consisting of two 2019 NASCAR Chevy Camaro race car models, two bar-style load cells, and a programmed Arduino UNO. Two trials were run at each drafting distance, 0, 0.5, 1, 1.5, and 2 car lengths apart. Each trial was run at a wind tunnel velocity of 78 mph (35 m/s) and force data was collected to represent the drag effects at each drafting location. Based on previously published experimentation, this analysis provided important data that related drafting effects in scale model race cars to full-scale vehicles. The experiment showed that scale model testing can be accurately completed when the wind tunnel Reynolds number is of the same magnitude as a full-scale NASCAR. However, the wind tunnel data collected was proven to be fully laminar flow and did not compare to the flow characteristics of typically turbulent flow seen in superspeedway races. Overall, the analytical drag analysis of drafting NASCAR models proved that wind tunnel testing is only accurate when many parameters are met and should only be used as a method of validation to full-scale testing.

ContributorsOlszak, Parker T (Author) / Takahashi, Timothy (Thesis director) / Kasbaoui, Mohamed (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
166193-Thumbnail Image.png
Description
This experiment investigated the effects of different vortex generator sizes and configurations on the induced drag of a 2006 Honda Accord, with comparisons to a control test. Tuft tests were carried out prior to any data collection. The tufts were placed along the roof and rear window of the vehicle

This experiment investigated the effects of different vortex generator sizes and configurations on the induced drag of a 2006 Honda Accord, with comparisons to a control test. Tuft tests were carried out prior to any data collection. The tufts were placed along the roof and rear window of the vehicle for each of the five vortex generator types. Video was taken of the tufts for each set of vortex generators, allowing a visual comparison of the flow characteristics with comparison to the control. Out of the four vortex generators tested, the two that yielded the most substantial change in the flow characteristics were utilized. The data collection was conducted utilizing the two sets of vortex generators, one large and one small, placed in three different locations along the roof of the vehicle. Over a course of four trials of data collection, each vortex generator size and configuration was tested two times along a stretch of Interstate 60, with each data set consisting of five minutes heading east, followed by five minutes heading west. Several experimental parameters were collected using an OBD II Bluetooth Adaptor, which were logged using the software compatible with the adaptor. This data was parsed and analyzed in Microsoft Excel and MATLAB. Utilizing an Analysis of Variance (ANOVA) analytical scheme, the data was generalized to account for terrain changes, steady state speed fluctuations, and weather changes per night. Overall, upon analysis of the data, the vortex generators showed little-to-no benefit to either the fuel efficiency or engine load experienced by the vehicle during the duration of the experiment. This result, while unexpected, is substantial as it shows that the expenditure of purchasing these vortex generators for this make and model of vehicle, and potentially other similar vehicles, is unnecessary as it produces no meaningful benefit.
ContributorsMazza, Seth (Author) / Walther, Chase (Co-author) / Takahashi, Timothy (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
166194-Thumbnail Image.png
Description
This experiment investigated the effects of different vortex generator sizes and configurations on the induced drag of a 2006 Honda Accord, with comparisons to a control test. Tuft tests were carried out prior to any data collection. The tufts were placed along the roof and rear window of the vehicle

This experiment investigated the effects of different vortex generator sizes and configurations on the induced drag of a 2006 Honda Accord, with comparisons to a control test. Tuft tests were carried out prior to any data collection. The tufts were placed along the roof and rear window of the vehicle for each of the five vortex generator types. Video was taken of the tufts for each set of vortex generators, allowing a visual comparison of the flow characteristics with comparison to the control. Out of the four vortex generators tested, the two that yielded the most substantial change in the flow characteristics were utilized. The data collection was conducted utilizing the two sets of vortex generators, one large and one small, placed in three different locations along the roof of the vehicle. Over a course of four trials of data collection, each vortex generator size and configuration was tested two times along a stretch of Interstate 60, with each data set consisting of five minutes heading east, followed by five minutes heading west. Several experimental parameters were collected using an OBD II Bluetooth Adaptor, which were logged using the software compatible with the adaptor. This data was parsed and analyzed in Microsoft Excel and MATLAB. Utilizing an Analysis of Variance (ANOVA) analytical scheme, the data was generalized to account for terrain changes, steady state speed fluctuations, and weather changes per night. Overall, upon analysis of the data, the vortex generators showed little-to-no benefit to either the fuel efficiency or engine load experienced by the vehicle during the duration of the experiment. This result, while unexpected, is substantial as it shows that the expenditure of purchasing these vortex generators for this make and model of vehicle, and potentially other similar vehicles, is unnecessary as it produces no meaningful benefit.
ContributorsWalther, Chase (Author) / Mazza, Seth (Co-author) / Takahashi, Timothy (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
Description
Textbooks have traditionally served as the primary educational resources in classes for decades. However, with the transition to online learning prompted by the onset of the COVID-19 pandemic, there has been a significant shift towards online learning materials. As the pandemic subsides, students, particularly those in engineering disciplines, have persisted

Textbooks have traditionally served as the primary educational resources in classes for decades. However, with the transition to online learning prompted by the onset of the COVID-19 pandemic, there has been a significant shift towards online learning materials. As the pandemic subsides, students, particularly those in engineering disciplines, have persisted in utilizing these alternative resources, prompting questions about their effectiveness and identifying the most suitable options. This study aims to uncover the underlying reasons for the decline in textbook usage and to identify the most effective resources for student learning. The study involved approximately 170 students enrolled in a Low Speed Aerodynamics course at Arizona State University (ASU). These students were invited to participate in a series of surveys after we introduced new changes to the course such as recitations, holistic grading, and an online interactive textbook. Around 40 students voluntarily responded to the surveys. Additionally, interviews were conducted with four professors to gather insights into why students may not be using textbooks, and to gather their opinions on recitations, the Connect software, and holistic grading, if they have incorporated these into their own courses. The survey findings revealed that although traditional textbooks offer detailed explanations to aid in grasping concepts, students often prefer alternative resources such as supplementary materials, recitations, and office hours for applying their knowledge to homework or tests. Holistic grading then provides meaningful feedback on the concepts they need to revisit after attempting to apply their understanding during tests. From our survey, it is evident that reaching a definitive solution regarding textbook selection and identifying optimal resources remains challenging. Nevertheless, students expressed a preference for interactions among peers and with professors, indicating that changes incorporating these elements were more favorably received. Further exploration into the continued implementation of holistic grading and recitations could provide insights into the enduring impact of the findings from this study over time.
ContributorsStout-Marshall, Andrew (Author) / Geddis, Noelle (Co-author) / Wells, Valana (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2024-05