Matching Items (193)
Filtering by

Clear all filters

187827-Thumbnail Image.png
Description
Physical human-robot interaction (pHRI) has immense potential in fields like industry, military, rehabilitation, and robotic-surgery. However, as the field continues to grow in prominence, there are technical challenges that must be addressed, including safety/stability, adaptability, efficiency, user experience, and versatility. Enhancing pHRI is paramount to overcome these challenges and benefit

Physical human-robot interaction (pHRI) has immense potential in fields like industry, military, rehabilitation, and robotic-surgery. However, as the field continues to grow in prominence, there are technical challenges that must be addressed, including safety/stability, adaptability, efficiency, user experience, and versatility. Enhancing pHRI is paramount to overcome these challenges and benefit numerous areas. This dissertation consists of different studies that focus on improving physical human-robot interaction through the development and implementation of various control methods. The first study investigates the lower bounds of robotic damping that humans can stably interact with in different arm postures. The results indicate that the human arm is less capable of adjusting to the unstable environments when it is close to the body and laterally displaced for the anterior-posterior (AP) and the medial-lateral (ML) directions, respectively. The second study proposes a multi-degree-of-freedom variable damping controller that balances stability and agility and reduces user effort in pHRI. The controller effectively reduces user effort while increasing agility without compromising stability. The third study presents a variable stiffness control method to provide intuitive and smooth force guidance during pHRI. This controller significantly reduces robotic force guidance and user effort while maintaining speed and accuracy of movement. Based on the findings from these studies, a biomechanics-based user-adaptive variable impedance control is proposed, which can be applied in a diverse set of applications to enhance the overall performance of coupled human-robot systems. This controller accounts for impedance properties of the human limbs and adaptively changes robotic damping, stiffness, and equilibrium trajectory based on online estimation of user's intent of motion and intent of movement direction while minimizing energy of the coupled human-robot system. Bayesian optimization was used to evaluate an unknown objective function and optimize noisy performance. The presented adaptive control strategy could reduce energy expenditure and achieve performance improvement in several metrics of stability, agility, user effort, smoothness, and user preference. All studies were validated and tested through several human experiments. Overall, the dissertation contributes to the field of pHRI by providing insights into the dynamics of human-robot interactions and proposing novel control strategies to enhance their performance.
ContributorsZahedi, Fatemeh (Author) / Lee, Hyunglae Prof. (Thesis advisor) / Berman, Spring Prof. (Committee member) / Marvi, Hamid Prof. (Committee member) / Yong, Sze Zheng Prof. (Committee member) / Zhang, Yu Prof. (Committee member) / Arizona State University (Publisher)
Created2023
171473-Thumbnail Image.png
Description
Applications such as heat exchangers, surface-based cellular structures, rotating blades, and waveguides rely on thin metal walls as crucial constituent elements of the structure. The design freedom enabled by laser powder bed fusion has led to an interest in exploiting this technology to further the performance of these components, many

Applications such as heat exchangers, surface-based cellular structures, rotating blades, and waveguides rely on thin metal walls as crucial constituent elements of the structure. The design freedom enabled by laser powder bed fusion has led to an interest in exploiting this technology to further the performance of these components, many of which retain their as-built surface morphologies on account of their design complexity. However, there is limited understanding of how and why mechanical properties vary by wall thickness for specimens that are additively manufactured and maintain an as-printed surface finish. Critically, the contributions of microstructure and morphology to the mechanical behavior of thin wall laser powder bed fusion structures have yet to be systematically identified and decoupled. This work focuses on elucidating the room temperature quasi-static tensile and high cycle fatigue properties of as-printed, thin-wall Inconel 718 fabricated using laser powder bed fusion, with the aim of addressing this critical gap in the literature. Wall thicknesses studied range from 0.3 - 2.0 mm, and the effects of Hot Isostatic Pressing are also examined, with sheet metal specimens used as a baseline for comparison. Statistical analyses are conducted to identify the significance of the dependence of properties on wall thickness and Hot Isostatic Pressing, as well as to examine correlations of these properties to section area, porosity, and surface roughness. A thorough microstructural study is complemented with a first-of-its-kind study of surface morphology to decouple their contributions and identify underlying causes for observed changes in mechanical properties. This thesis finds that mechanical properties in the quasi-static and fatigue framework do not see appreciable declines until specimen thickness is under 0.75 mm in thickness. The added Hot Isostatic Pressing heat treatment effectively closed pores, recrystallized the grain structure, and provided a more homogenous microstructure that benefits the modulus, tensile strength, elongation, and fatigue performance at higher stresses. Stress heterogeneities, primarily caused by surface defects, negatively affected the thinner specimens disproportionately. Without the use of the Hot Isostatic Pressing, the grain structure remained much more refined and benefitted the yield strength and fatigue endurance limit.
ContributorsParadise, Paul David (Author) / Bhate, Dhruv (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Azeredo, Bruno (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2022
171814-Thumbnail Image.png
Description
Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials

Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials under service conditions. This dissertation provides fundamental investigations of several advanced materials: thermoset polymers, a common matrix material for fiber-reinforced composites and nanocomposites; aluminum alloy 7075-T6 (AA7075-T6), a high-performance aerospace material; and ceramic matrix composites (CMCs), an advanced composite for extreme-temperature applications. To understand matrix interactions with various interfaces and nanoinclusions at their fundamental scale, the properties of thermoset polymers are studied at the atomistic scale. An improved proximity-based molecular dynamics (MD) technique for modeling the crosslinking of thermoset polymers is carefully established, enabling realistic curing simulations through its ability to dynamically and probabilistically perform complex topology transformations. The proximity-based MD curing methodology is then used to explore damage initiation and the local anisotropic evolution of mechanical properties in thermoset polymers under uniaxial tension with an emphasis on changes in stiffness through a series of tensile loading, unloading, and reloading experiments. Aluminum alloys in aerospace applications often require a fatigue life of over 109 cycles, which is well over the number of cycles that can be practically tested using conventional fatigue testing equipment. In order to study these high-life regimes, a detailed ultrasonic cycle fatigue study is presented for AA7075-T6 under fully reversed tension-compression loading. The geometric sensitivity, frequency effects, size effects, surface roughness effects, and the corresponding failure mechanisms for ultrasonic fatigue across different fatigue regimes are investigated. Finally, because CMCs are utilized in extreme environments, oxidation plays an important role in their degradation. A multiphysics modeling methodology is thus developed to address the complex coupling between oxidation, mechanical stress, and oxygen diffusion in heterogeneous carbon fiber-reinforced CMC microstructures.
ContributorsSchichtel, Jacob (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Ghoshal, Anindya (Committee member) / Huang, Huei-Ping (Committee member) / Jiao, Yang (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2022
171815-Thumbnail Image.png
Description
Advanced fibrous composite materials exhibit outstanding thermomechanical performance under extreme environments, which make them ideal for structural components that are used in a wide range of aerospace, nuclear, and defense applications. The integrity and residual useful life of these components, however, are strongly influenced by their inherent material flaws and

Advanced fibrous composite materials exhibit outstanding thermomechanical performance under extreme environments, which make them ideal for structural components that are used in a wide range of aerospace, nuclear, and defense applications. The integrity and residual useful life of these components, however, are strongly influenced by their inherent material flaws and defects resulting from the complex fabrication processes. These defects exist across multiple length scales and govern several scale-dependent inelastic deformation mechanisms of each of the constituents as well as their composite damage anisotropy. Tailoring structural components for optimal performance requires addressing the knowledge gap regarding the microstructural material morphology that governs the structural scale damage and failure response. Therefore, there is a need for a high-fidelity multiscale modeling framework and scale-specific in-situ experimental characterization that can capture complex inelastic mechanisms, including damage initiation and propagation across multiple length scales. This dissertation presents a novel multiscale computational framework that accounts for experimental information pertinent to microstructure morphology and architectural variabilities to investigate the response of ceramic matrix composites (CMCs) with manufacturing-induced defects. First, a three-dimensional orthotropic viscoplasticity creep formulation is developed to capture the complex temperature- and time-dependent constituent load transfer mechanisms in different CMC material systems. The framework also accounts for a reformulated fracture mechanics-informed matrix damage model and the Curtin progressive fiber damage model to capture the complex scale-dependent damage and failure mechanisms through crack kinetics and porosity growth. Next, in-situ experiments using digital image correlation (DIC) are performed to capture the damage and failure mechanisms in CMCs and to validate the high-fidelity modeling results. The dissertation also presents an exhaustive experimental investigation into the effects of temperature and manufacturing-induced defects on toughened epoxy adhesives and hybrid composite-metallic bonded joints. Nondestructive evaluation techniques are utilized to characterize the inherent defects morphology of the bulk adhesives and bonded interface. This is followed by quasi-static tensile tests conducted at extreme hot and cold temperature conditions. The damage mechanisms and failure modes are investigated using in-situ DIC and a high-resolution camera. The information from the morphology characterization studies is used to reconstruct high-fidelity geometries of the test specimens for finite element analysis.
ContributorsKhafagy, Khaled Hassan Abdo (Author) / Chattopadhyay, Aditi (Thesis advisor) / Fard, Masoud Y. (Committee member) / Milcarek, Ryan (Committee member) / Stoumbos, Tom (Committee member) / Borkowski, Luke (Committee member) / Arizona State University (Publisher)
Created2022
171824-Thumbnail Image.png
Description
Magnetic liquids called ferrofluids have been used in applications ranging from audio speaker cooling and rotary pressure seals to retinal detachment surgery and implantable artificial glaucoma valves. Recently, ferrofluids have been investigated as a material for use in magnetically controllable liquid droplet robotics. Liquid droplet robotics is an emerging technology

Magnetic liquids called ferrofluids have been used in applications ranging from audio speaker cooling and rotary pressure seals to retinal detachment surgery and implantable artificial glaucoma valves. Recently, ferrofluids have been investigated as a material for use in magnetically controllable liquid droplet robotics. Liquid droplet robotics is an emerging technology that aims to apply control theory to manipulate fluid droplets as robotic agents to perform a wide range of tasks. Furthermore, magnetically controlled micro-robotics is another popular area of study where manipulating a magnetic field allows for the control of magnetized micro-robots. Both of these emerging fields have potential for impact toward medical applications: liquid characteristics such as being able to dissolve various compounds, be injected via a needle, and the potential for the human body to automatically filter and remove a liquid droplet robot, make liquid droplet robots advantageous for medical applications; while the ability to remotely control the torques and forces on an untethered microrobot via modulating the magnetic field and gradient is also highly advantageous. The research described in this dissertation explores applications and methods for the electromagnetic control of ferrofluid droplet robots. First, basic electrical components built from fluidic channels containing ferrofluid are made remotely tunable via the placement of ferrofluid within the channel. Second, a ferrofluid droplet is shown to be fully controllable in position, stretch direction, and stretch length in two dimensions using proportional-integral-derivative (PID) controllers. Third, control of a ferrofluid’s position, stretch direction, and stretch length is extended to three dimensions, and control gains are optimized via a Bayesian optimization process to achieve higher accuracy. Finally, magnetic control of both single and multiple ferrofluid droplets in two dimensions is investigated via a visual model predictive control approach based on machine learning. These achievements take both liquid droplet robotics and magnetic micro-robotics fields several steps closer toward real-world medical applications such as embedded soft electronic health monitors, liquid-droplet-robot-based drug delivery, and automated magnetically actuated surgeries.
ContributorsAhmed, Reza James (Author) / Marvi, Hamidreza (Thesis advisor) / Espanol, Malena (Committee member) / Rajagopalan, Jagannathan (Committee member) / Zhuang, Houlong (Committee member) / Xu, Zhe (Committee member) / Arizona State University (Publisher)
Created2022
189221-Thumbnail Image.png
Description
The relationships between the properties of materials and their microstructures have been a central topic in materials science. The microstructure-property mapping and numerical failure prediction are critical for integrated computational material engineering (ICME). However, the bottleneck of ICME is the lack of a clear understanding of the failure mechanism as

The relationships between the properties of materials and their microstructures have been a central topic in materials science. The microstructure-property mapping and numerical failure prediction are critical for integrated computational material engineering (ICME). However, the bottleneck of ICME is the lack of a clear understanding of the failure mechanism as well as an efficient computational framework. To resolve these issues, research is performed on developing novel physics-based and data-driven numerical methods to reveal the failure mechanism of materials in microstructure-sensitive applications. First, to explore the damage mechanism of microstructure-sensitive materials in general loading cases, a nonlocal lattice particle model (LPM) is adopted because of its intrinsic ability to handle the discontinuity. However, the original form of LPM is unsuitable for simulating nonlinear behavior involving tensor calculation. Therefore, a damage-augmented LPM (DLPM) is proposed by introducing the concept of interchangeability and bond/particle-based damage criteria. The proposed DLPM successfully handles the damage accumulation behavior in general material systems under static and fatigue loading cases. Then, the study is focused on developing an efficient physics-based data-driven computational framework. A data-driven model is proposed to improve the efficiency of a finite element analysis neural network (FEA-Net). The proposed model, i.e., MFEA-Net, aims to learn a more powerful smoother in a multigrid context. The learned smoothers have good generalization properties, and the resulted MFEA-Net has linear computational complexity. The framework has been applied to efficiently predict the thermal and elastic behavior of composites with various microstructural fields. Finally, the fatigue behavior of additively manufactured (AM) Ti64 alloy is analyzed both experimentally and numerically. The fatigue experiments show the fatigue life is related with the contour process parameters, which can result in different pore defects, surface roughness, and grain structures. The fractography and grain structures are closely observed using scanning electron microscope. The sample geometry and defect/crack morphology are characterized through micro computed tomography (CT). After processing the pixel-level CT data, the fatigue crack initiation and growth behavior are numerically simulated using MFEA-Net and DLPM. The experiments and simulation results provided valuable insights in fatigue mechanism of AM Ti64 alloy.
ContributorsMeng, Changyu (Author) / Liu, Yongming (Thesis advisor) / Hoover, Christian (Committee member) / Li, Lin (Committee member) / Peralta, Pedro (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2023
189313-Thumbnail Image.png
Description
This dissertation introduces and examines Soft Curved Reconfigurable Anisotropic Mechanisms (SCRAMs) as a solution to address actuation, manufacturing, and modeling challenges in the field of soft robotics, with the aim of facilitating the broader implementation of soft robots in various industries. SCRAM systems utilize the curved geometry of thin elastic

This dissertation introduces and examines Soft Curved Reconfigurable Anisotropic Mechanisms (SCRAMs) as a solution to address actuation, manufacturing, and modeling challenges in the field of soft robotics, with the aim of facilitating the broader implementation of soft robots in various industries. SCRAM systems utilize the curved geometry of thin elastic structures to tackle these challenges in soft robots. SCRAM devices can modify their dynamic behavior by incorporating reconfigurable anisotropic stiffness, thereby enabling tailored locomotion patterns for specific tasks. This approach simplifies the actuation of robots, resulting in lighter, more flexible, cost-effective, and safer soft robotic systems. This dissertation demonstrates the potential of SCRAM devices through several case studies. These studies investigate virtual joints and shape change propagation in tubes, as well as anisotropic dynamic behavior in vibrational soft twisted beams, effectively demonstrating interesting locomotion patterns that are achievable using simple actuation mechanisms. The dissertation also addresses modeling and simulation challenges by introducing a reduced-order modeling approach. This approach enables fast and accurate simulations of soft robots and is compatible with existing rigid body simulators. Additionally, this dissertation investigates the prototyping processes of SCRAM devices and offers a comprehensive framework for the development of these devices. Overall, this dissertation demonstrates the potential of SCRAM devices to overcome actuation, modeling, and manufacturing challenges in soft robotics. The innovative concepts and approaches presented have implications for various industries that require cost-effective, adaptable, and safe robotic systems. SCRAM devices pave the way for the widespread application of soft robots in diverse domains.
ContributorsJiang, Yuhao (Author) / Aukes, Daniel (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Srivastava, Siddharth (Committee member) / Arizona State University (Publisher)
Created2023
189317-Thumbnail Image.png
Description
The conversion of H2S enables the recycling of a waste gas into a potential source of hydrogen at a lower thermodynamic energy cost as compared to water splitting. However, studies on the photocatalytic decomposition of H2S focus on traditional deployment of catalyst materials to facilitate this conversion, and operation only

The conversion of H2S enables the recycling of a waste gas into a potential source of hydrogen at a lower thermodynamic energy cost as compared to water splitting. However, studies on the photocatalytic decomposition of H2S focus on traditional deployment of catalyst materials to facilitate this conversion, and operation only when a light source is available. In this study, the efficacy of Direct Ink Written (DIW) luminous structures for H2S conversion has been investigated, with the primary objective of sustaining H2S conversion when a light source has been terminated. Additionally, as a secondary objective, improving light distribution within monoliths for photocatalytic applications is desired. The intrinsic illumination of the 3D printed monoliths developed in this work could serve as an alternative to monolith systems that employ light transmitting fiber optic cables that have been previously proposed to improve light distribution in photocatalytic systems. The results that were obtained demonstrate that H2S favorable adsorbents, a wavelength compatible long afterglow phosphor, and a photocatalyst can form viscoelastic inks that are printable into DIW luminous monolithic contactors. Additionally, rheological, optical and porosity analyses conducted, provide design guidelines for future studies seeking to develop DIW luminous monoliths from compatible catalyst-phosphor pairs. The monoliths that were developed demonstrate not only improved conversion when exposed to light, but more significantly, extended H2S conversion from the afterglow of the monoliths when an external light source was removed. Lastly, considering growing interests in attaining a global circular economy, the techno-economic feasibility of a H2S-CO2 co-utilization plant leveraging hydrogen from H2S photocatalysis as a feed source for a downstream CO2 methanation plant has been assessed. The work provides preliminary information to guide future chemical kinetic design characteristics that are important to strive for if using H2S as a source of hydrogen in a CO2 methanation facility.
ContributorsAbdullahi, Adnan (Author) / Andino, Jean (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Bhate, Dhruv (Committee member) / Wang, Robert (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2023
187771-Thumbnail Image.png
Description
In this dissertation, set-membership methods are designed for learning unknown system dynamics, feedback control and state estimation problems. First, the thesis developed approaches for finding upper and lower bounds of the vector fields of complex system dynamics to simplify the models for control and estimation tasks. Specifically, optimization-based approaches are

In this dissertation, set-membership methods are designed for learning unknown system dynamics, feedback control and state estimation problems. First, the thesis developed approaches for finding upper and lower bounds of the vector fields of complex system dynamics to simplify the models for control and estimation tasks. Specifically, optimization-based approaches are proposed for finding piecewise-affine over-approximations of the nonlinear models with uncertain coefficients, including with polytopic partitions/subregions to reduce their conservativeness. Given only prior noisy sampled data when precise mathematical models are unavailable, two data-driven set-membership learning approaches are proposed under different assumptions over continuity of the system, namely under assumptions of Lipschitz continuity and differentiability with bounded Jacobian matrices. Since both methods fall under the umbrella of non-parametric learning approaches which often lack scalability, down-sampling techniques are proposed to reduce the computation complexity of the algorithm. Once the set-membership models are obtained, it was shown that any model (passive) invalidation guarantees for the over-approximated system also hold for the original system. Second, the problem of state and unknown terrain estimation is addressed, where unknown terrain parameters, e.g., terrain stiffness, are inferred from motion through vehicle-terrain interaction. In particular, a state and model interval observer is designed for terrain estimation based on set-membership estimation, where the goal is to find set-valued estimates (in the form of hyperrectangles or intervals) of the states and unknown terrain parameters. Finally, robust data-driven control barrier functions (CBF-DDs) are proposed to guarantee robust safety of unknown continuous control systems despite worst-case realizations of generalization errors. The aforementioned non-parametric data-driven approaches are leveraged to learn guaranteed upper and lower bounds of the unknown time-derivative of control barrier function from the data set to formulate/obtain a safe input set for a given state. By incorporating the safe input set into an optimization-based controller, system safety can be ensured for all times.
ContributorsJin, Zeyuan (Author) / Yong, Sze S. Z. (Thesis advisor) / Rivera, Daniel D. E. (Committee member) / Fainekos, Georgios G. (Committee member) / Berman, Spring S. (Committee member) / Lee, Hyunglae H. (Committee member) / Arizona State University (Publisher)
Created2023
189290-Thumbnail Image.png
Description
In this research, the chemical and mineralogical compositions, physical and mechanical properties, and failure mechanisms of two ordinary chondrite (OCs) meteorites Aba Panu (L3) and Viñales (L6), and the iron meteorite called Gibeon (IVA) were studied. OCs are dominated by anhydrous silicates with lesser amounts of sulfides and native Fe-Ni

In this research, the chemical and mineralogical compositions, physical and mechanical properties, and failure mechanisms of two ordinary chondrite (OCs) meteorites Aba Panu (L3) and Viñales (L6), and the iron meteorite called Gibeon (IVA) were studied. OCs are dominated by anhydrous silicates with lesser amounts of sulfides and native Fe-Ni metals, while Gibeon is primarily composed of Fe-Ni metals with scattered inclusions of graphite and troilite. The OCs were investigated to understand their response to compressive loading, using a three-dimensional (3-D) Digital Image Correlation (DIC) technique to measure full-field deformation and strain during compression. The DIC data were also used to identify the effects of mineralogical and structural heterogeneity on crack formation and growth. Even though Aba Panu and Viñales are mineralogically similar and are both classified as L ordinary chondrites, they exhibit differences in compressive strengths due to variations in chemical compositions, microstructure, and the presence of cracks and shock veins. DIC data of Aba Panu and Viñales show a brittle failure mechanism, consistent with the crack formation and growth from pre-existing microcracks and porosity. In contrast, the Fe-Ni phases of the Gibeon meteorite deform plastically without rupture during compression, whereas during tension, plastic deformations followed by necking lead to final failure. The Gibeon DIC results showed strain concentration in the tensile gauge region along the sample edge, resulting in the initiation of new damage surfaces that propagated perpendicular to the loading direction. Finally, an in-situ low-temperature testing method of iron meteorites was developed to study the response of their unique microstructure and failure mechanism.
ContributorsRabbi, Md Fazle (Author) / Chattopadhyay, Aditi (Thesis advisor) / Garvie, Laurence A.J. (Thesis advisor) / Liu, Yongming (Committee member) / Fard, Masoud Yekani (Committee member) / Cotto-Figueroa, Desiree (Committee member) / Arizona State University (Publisher)
Created2023