Matching Items (43)
Filtering by

Clear all filters

153141-Thumbnail Image.png
Description
Hydraulic fracturing is an effective technique used in well stimulation to increase petroleum well production. A combination of multi-stage hydraulic fracturing and horizontal drilling has led to the recent boom in shale gas production which has changed the energy landscape of North America.

During the fracking process, highly pressurized mixture of

Hydraulic fracturing is an effective technique used in well stimulation to increase petroleum well production. A combination of multi-stage hydraulic fracturing and horizontal drilling has led to the recent boom in shale gas production which has changed the energy landscape of North America.

During the fracking process, highly pressurized mixture of water and proppants (sand and chemicals) is injected into to a crack, which fractures the surrounding rock structure and proppants help in keeping the fracture open. Over a longer period, however, these fractures tend to close due to the difference between the compressive stress exerted by the reservoir on the fracture and the fluid pressure inside the fracture. During production, fluid pressure inside the fracture is reduced further which can accelerate the closure of a fracture.

In this thesis, we study the stress distribution around a hydraulic fracture caused by fluid production. It is shown that fluid flow can induce a very high hoop stress near the fracture tip. As the pressure gradient increases stress concentration increases. If a fracture is very thin, the flow induced stress along the fracture decreases, but the stress concentration at the fracture tip increases and become unbounded for an infinitely thin fracture.

The result from the present study can be used for studying the fracture closure problem, and ultimately this in turn can lead to the development of better proppants so that prolific well production can be sustained for a long period of time.
ContributorsPandit, Harshad Rajendra (Author) / Chen, Kang P (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2014
155231-Thumbnail Image.png
Description
Many defense, healthcare, and energy applications can benefit from the development of surfaces that easily shed droplets of liquids of interest. Desired wetting properties are typically achieved via altering the surface chemistry or topography or both through surface engineering. Despite many recent advancements, materials modified only on their exterior are

Many defense, healthcare, and energy applications can benefit from the development of surfaces that easily shed droplets of liquids of interest. Desired wetting properties are typically achieved via altering the surface chemistry or topography or both through surface engineering. Despite many recent advancements, materials modified only on their exterior are still prone to physical degradation and lack durability. In contrast to surface engineering, this thesis focuses on altering the bulk composition and the interior of a material to tune how an exterior surface would interact with liquids. Fundamental and applied aspects of engineering of two material systems with low contact angle hysteresis (i.e. ability to easily shed droplets) are explained. First, water-shedding metal matrix hydrophobic nanoparticle composites with high thermal conductivity for steam condensation rate enhancement are discussed. Despite having static contact angle <90° (not hydrophobic), sustained dropwise steam condensation can be achieved at the exterior surface of the composite due to low contact angle hysteresis (CAH). In order to explain this observation, the effect of varying the length scale of surface wetting heterogeneity over three orders of magnitude on the value of CAH was experimentally investigated. This study revealed that the CAH value is primarily governed by the pinning length which in turn depends on the length scale of wetting heterogeneity. Modifying the heterogeneity size ultimately leads to near isotropic wettability for surfaces with highly anisotropic nanoscale chemical heterogeneities. Next, development of lubricant-swollen polymeric omniphobic protective gear for defense and healthcare applications is described. Specifically, it is shown that the robust and durable protective gear can be made from polymeric material fully saturated with lubricant that can shed all liquids irrespective of their surface tensions even after multiple contact incidences with the foreign objects. Further, a couple of schemes are proposed to improve the rate of lubrication and replenishment of lubricant as well as reduce the total amount of lubricant required in making the polymeric protective gear omniphobic. Overall, this research aims to understand the underlying physics of dynamic surface-liquid interaction and provides simple scalable route to fabricate better materials for condensers and omniphobic protective gear.
ContributorsDamle, Viraj (Author) / Rykaczewski, Konrad (Thesis advisor) / Phelan, Patrick (Committee member) / Lin, Jerry (Committee member) / Herrmann, Marcus (Committee member) / Wang, Robert (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2017
155288-Thumbnail Image.png
Description
Durable, cost-effective, and environmentally friendly anti-icing methods are desired to reduce the icing hazard in many different industrial areas including transportation systems, power plants, power transmission, as well as offshore oil and gas production. In contrast to traditional passive anti-icing surfaces, this thesis work introduces an anti-icing coating that responds

Durable, cost-effective, and environmentally friendly anti-icing methods are desired to reduce the icing hazard in many different industrial areas including transportation systems, power plants, power transmission, as well as offshore oil and gas production. In contrast to traditional passive anti-icing surfaces, this thesis work introduces an anti-icing coating that responds to different icing conditions by releasing an antifreeze liquid. It consists of an outer porous superhydrophobic epidermis and a wick-like underlying dermis that is infused with the antifreeze liquid. This bi-layer coating prevents accumulation of frost, freezing fog, and freezing rain, while conventional anti-icing surfaces typically work only in one of these conditions. The bi-layer coating also delays condensation on the exterior surface at least ten times longer than identical system without antifreeze.

It is demonstrated that the significant delay in condensation onset is due to the integral humidity sink effect posed by the hygroscopic antifreeze liquid infused in the porous structure. This effect significantly alters the water vapor concentration field at the coating surface, which delays nucleation of drops and ice. It was demonstrated that with a proper design of the environmental chamber the size of the region of inhibited condensation and condensation frosting around an isolated pore, as well as periodically spaced pores, filled by propylene glycol can be quantitatively predicted from quasi-steady state water vapor concentration field. Theoretical analysis and experiments revealed that the inhibition of nucleation is governed by only two non-dimensional geometrical parameters: the pore size relative to the unit cell size and the ratio of the unit cell size to the thickness of the boundary layer. It is demonstrated that by switching the size of the pores from millimeters to nanometers, a dramatic depression of the nucleation onset temperature, as well as significantly greater delay in nucleation onset can be achieved.
ContributorsSun, Xiaoda (Author) / Rykaczewski, Konrad (Thesis advisor) / Lin, Jerry (Committee member) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Herrmann, Marcus (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2017
156167-Thumbnail Image.png
Description
Membrane filtration is an important technology in industry. In the past few decades, equations have been developed from experimental results to predict cake formation and permeate flux decline in the membrane filtration process. In the current work, the block of particles on membrane surface is achieved by setting surface flux

Membrane filtration is an important technology in industry. In the past few decades, equations have been developed from experimental results to predict cake formation and permeate flux decline in the membrane filtration process. In the current work, the block of particles on membrane surface is achieved by setting surface flux on membrane surface zero. This approach is implemented for both microfiltration and nanofiltration using OpenFOAM. Moreover, a new method to deal with cake resistance for nanofiltration is introduced. Cake resistance is applied to both cake and membrane. To validate the new techniques, results of crossflow microfiltration are compared to theoretical results and results of two crossflow nanofiltration cases are compared to experimental data. In addition, the new techniques are applied to dead end filtration to observe the different structure of the cake and explore the effect of resistance on velocity profile.
ContributorsHu, Jueming (Author) / Herrmann, Marcus (Thesis advisor) / Huang, Huei-Ping (Committee member) / Lee, Taewoo (Committee member) / Arizona State University (Publisher)
Created2018
155810-Thumbnail Image.png
Description
The effect of reduced frequency on dynamic stall behavior of a pitching NACA0012 airfoil in a turbulent wake using Direct Numerical Simulations is presented in the current study. Upstream turbulence with dynamically oscillating blades and airfoils is associated with ambient flow unsteadiness and is encountered in many operating conditions. Wake

The effect of reduced frequency on dynamic stall behavior of a pitching NACA0012 airfoil in a turbulent wake using Direct Numerical Simulations is presented in the current study. Upstream turbulence with dynamically oscillating blades and airfoils is associated with ambient flow unsteadiness and is encountered in many operating conditions. Wake turbulence, a more realistic scenario for airfoils in operation, is generated using a small solid cylinder placed upstream, the vortices shed from which interact with the pitching airfoil affecting dynamic stall behavior.

A recently developed moving overlapping grid approach is used using a high-order Spectral Element Method (SEM) for spatial discretization combined with a dynamic time-stepping procedure allowing for up to third order temporal discretization. Two cases of reduced frequency (k = 0:16 and 0:25) for airfoil oscillation are investigated and the change in dynamic stall behavior with change in reduced frequency is studied and documented using flow-fields and aerodynamic coefficients (Drag, Lift and Pitching Moment) with a focus on understanding vortex system dynamics (including formation of secondary vortices) for different reduced frequencies and it’s affect on airfoil aerodynamic characteristics and fatigue life. Transition of the flow over the surface of an airfoil for both undisturbed and disturbed flow cases will also be discussed using Pressure coefficient and Skin Friction coefficient data for a given cycle combined with a wavelet analysis using Morse wavelets in MATLAB.
ContributorsGandhi, Anurag (Author) / Peet, Yulia (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2017
158194-Thumbnail Image.png
Description
Compressible fluid flows involving multiple physical states of matter occur in both nature and technical applications such as underwater explosions and implosions, cavitation-induced bubble collapse in naval applications and Richtmyer-Meshkov type instabilities in inertial confinement fusion. Of particular interest is the atomization of fuels that enable shock-induced mixing of fuel

Compressible fluid flows involving multiple physical states of matter occur in both nature and technical applications such as underwater explosions and implosions, cavitation-induced bubble collapse in naval applications and Richtmyer-Meshkov type instabilities in inertial confinement fusion. Of particular interest is the atomization of fuels that enable shock-induced mixing of fuel and oxidizer in supersonic combustors. Due to low residence times and varying length scales, providing insight through physical experiments is both technically challenging and sometimes unfeasible. Numerical simulations can help provide detailed insight and aid in the engineering design of devices that can harness these physical phenomena.

In this research, computational methods were developed to accurately simulate phase interfaces in compressible fluid flows with a focus on targeting primary atomization. Novel numerical methods which treat the phase interface as a discontinuity, and as a smeared region were developed using low-dissipation, high-order schemes. The resulting methods account for the effects of compressibility, surface tension and viscosity. To aid with the varying length scales and high-resolution requirements found in atomization applications, an adaptive mesh refinement (AMR) framework is used to provide high-resolution only in regions of interest. The developed methods were verified with test cases involving strong shocks, high density ratios, surface tension effects and jumps in the equations of state, in one-, two- and three dimensions, obtaining good agreement with theoretical and experimental results. An application case of the primary atomization of a liquid jet injected into a Mach 2 supersonic crossflow of air is performed with the methods developed.
ContributorsKannan, Karthik (Author) / Herrmann, Marcus (Thesis advisor) / Huang, Huei-Ping (Committee member) / Lopez, Juan (Committee member) / Peet, Yulia (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2020
158822-Thumbnail Image.png
Description
Deformable heat exchangers could provide a multitude of previously untapped advantages ranging from adaptable performance via macroscale, dynamic shape change (akin to dilation/constriction seen in blood vessels) to enhanced heat transfer at thermal interfaces through microscale, surface deformations. So far, making deformable, ‘soft heat exchangers’ (SHXs) has been limited by

Deformable heat exchangers could provide a multitude of previously untapped advantages ranging from adaptable performance via macroscale, dynamic shape change (akin to dilation/constriction seen in blood vessels) to enhanced heat transfer at thermal interfaces through microscale, surface deformations. So far, making deformable, ‘soft heat exchangers’ (SHXs) has been limited by the low thermal conductivity of materials with suitable mechanical properties. The recent introduction of liquid-metal embedded elastomers by Bartlett et al1 has addressed this need. Specifically, by remaining soft and stretchable despite the addition of filler, these thermally conductive composites provide an ideal material for the new class of “soft thermal systems”, which is introduced in this work. Understanding such thermal systems will be a key element in enabling technology that require high levels of stretchability, such as thermoregulatory garments, soft electronics, wearable electronics, and high-powered robotics. Shape change inherent to SHX operation has the potential to violate many conventional assumptions used in HX design and thus requires the development of new theoretical approaches to predict performance. To create a basis for understanding these devices, this work highlights two sequential studies. First, the effects of transitioning to a surface deformable, SHX under steady state static conditions in the setting of a liquid cooling device for thermoregulation, electronics and robotics applications was explored. In this study, a thermomechanical model was built and validated to predict the thermal performance and a system wide analysis to optimize such devices was carried out. Second, from a more fundamental perspective, the effects of SHXs undergoing transient shape deformation during operation was explored. A phase shift phenomenon in cooling performance dependent on stretch rate, stretch extent and thermal diffusivity was discovered and explained. With the use of a time scale analysis, the extent of quasi-static assumption viability in modeling such systems was quantified and multiple shape modulation regime limits were defined. Finally, nuance considerations and future work of using liquid metal-silicone composites in SHXs were discussed.
ContributorsKotagama, Praveen (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Committee member) / Phelan, Patrick (Committee member) / Herrmann, Marcus (Committee member) / Green, Matthew (Committee member) / Arizona State University (Publisher)
Created2020
158887-Thumbnail Image.png
Description
Gas Dynamic Virtual Nozzles (GDVN) produce microscopic flow-focused liquid jets and are widely used for sample delivery in serial femtosecond crystallography (SFX) and time-resolved solution scattering. Recently, 2-photon polymerization (2PP) made it possible to produce 3D-printed GDVNs with submicron printing resolution. Comparing with hand- fabricated nozzles, reproducibility, and less developing

Gas Dynamic Virtual Nozzles (GDVN) produce microscopic flow-focused liquid jets and are widely used for sample delivery in serial femtosecond crystallography (SFX) and time-resolved solution scattering. Recently, 2-photon polymerization (2PP) made it possible to produce 3D-printed GDVNs with submicron printing resolution. Comparing with hand- fabricated nozzles, reproducibility, and less developing effort, and similarity of the performance of different 3D printed nozzles are among the advantages of using 3D printing techniques to develop GDVN’s. Submicron printing resolution also makes it possible to easily improve GDVN performance by optimizing the design of nozzles. In this study, 3D printed nozzles were developed to achieve low liquid and gas flow rates and high liquid jet velocities. A double-pulsed nanosecond laser imaging system was used to perform Particle Tracking Velocimetry (PTV) in order to determine jet velocities and assess jet stability/reproducibility. The testing results of pure water jets focused with He sheath gas showed that some designs can easily achieve stable liquid jets with velocities of more than 80 m/s, with pure water flowing at 3 microliters/min, and helium sheath gas flowing at less than 5 mg/min respectively. A numerical simulation pipeline was also used to characterize the performance of different 3D printed GDVNs. The results highlight the potential of making reproducible GDVNs with minimum fabrication effort, that can meet the requirements of present and future SFX and time-resolved solution scattering research.
ContributorsNazari, Reza (Author) / Adrian, Ronald (Thesis advisor) / Kirian, Richard (Thesis advisor) / Herrmann, Marcus (Committee member) / Phelan, Patrick (Committee member) / Weierstall, Uwe (Committee member) / Arizona State University (Publisher)
Created2020
161518-Thumbnail Image.png
Description
The Vortex-lattice method has been utilized throughout history to both design and analyze the aerodynamic performance characteristics of flight vehicles. There are numerous different programs utilizing this method, each of which has its own set of assumptions and performance limitations. This thesis highlights VORLAX, one such solver, and details its

The Vortex-lattice method has been utilized throughout history to both design and analyze the aerodynamic performance characteristics of flight vehicles. There are numerous different programs utilizing this method, each of which has its own set of assumptions and performance limitations. This thesis highlights VORLAX, one such solver, and details its historic and modernized performance characteristics through a series of code improvements and optimizations. With VORLAX, rapid synthesis and verification of aircraft performance data related to wing pressure distributions, stability and control, and Federal Regulation compliance can be quickly and accurately obtained. As such, VORLAX represents a class of efficient yet largely forgotten computational techniques that allow users to explore numerous design solutions in a fraction of the time that would be needed to use more complex, full-fledged engineering tools. In the age of modern computers, one hypothesis is that VORLAX and similar “lean” computational fluid dynamics (CFD) solvers have preferential performance characteristics relative to expensive, volume grid CFD suites, such as ANSYS Fluent. By utilizing these types of programs, tasks such as pre- and post-processing become trivially simple with basic scripting languages such as Visual Basic for Applications or Python. Thus, lean engineering programs and methodologies deserve their place in modern engineering, despite their wrongfully decreasing prevalence.
ContributorsSouders, Tyler Jeffery (Author) / Takahashi, Timothy T. (Thesis advisor) / Herrmann, Marcus (Thesis advisor) / Dahm, Werner J.A. (Committee member) / Arizona State University (Publisher)
Created2021
161883-Thumbnail Image.png
Description
Realistic engineering, physical and biological systems are very complex in nature, and their response and performance are governed by multitude of interacting processes. In computational modeling of these systems, the interactive response is most often ignored, and simplifications are made to model one or a few relevant phenomena as opposed

Realistic engineering, physical and biological systems are very complex in nature, and their response and performance are governed by multitude of interacting processes. In computational modeling of these systems, the interactive response is most often ignored, and simplifications are made to model one or a few relevant phenomena as opposed to a complete set of interacting processes due to a complexity of integrative analysis. In this thesis, I will develop new high-order computational approaches that reduce the amount of simplifications and model the full response of a complex system by accounting for the interaction between different physical processes as required for an accurate description of the global system behavior. Specifically, I will develop multi-physics coupling techniques based on spectral-element methods for the simulations of such systems. I focus on three specific applications: fluid-structure interaction, conjugate heat transfer, and modeling of acoustic wave propagation in non-uniform media. Fluid-structure interaction illustrates a complex system between a fluid and a solid, where a movable and deformable structure is surrounded by fluid flow, and its deformation caused by fluid affects the fluid flow interactively. To simulate this system, two coupling schemes are developed: 1) iterative implicit coupling, and 2) explicit coupling based on Robin-Neumann boundary conditions. A comprehensive verification strategy of the developed methodology is presented, including a comparison with benchmark flow solutions, h-, p- and temporal refinement studies. Simulation of a turbulent flow in a channel interacting with a compliant wall is attempted as well. Another problem I consider is when a solid is stationary, but a heat transfer occurs on the fluid-solid interface. To model this problem, a conjugate heat transfer framework is introduced. Validation of the framework, as well as studies of an interior thermal environment in a building regulated by an HVAC system with an on/off control model with precooling and multi-zone precooling strategies are presented. The final part of this thesis is devoted to modeling an interaction of acoustic waves with the fluid flow. The development of a spectral-element methodology for solution of Lighthill’s equation, and its application to a problem of leak detection in water pipes is presented.
ContributorsXu, Yiqin (Author) / Peet, Yulia (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Adrian, Ronald (Committee member) / Baer, Steven (Committee member) / Arizona State University (Publisher)
Created2021