Matching Items (193)
Filtering by

Clear all filters

156146-Thumbnail Image.png
Description
Energy harvesting from ambient is important to configuring Wireless Sensor Networks (WSN) for environmental data collecting. In this work, highly flexible thermoelectric generators (TEGs) have been studied and fabricated to supply power to the wireless sensor notes used for data collecting in hot spring environment. The fabricated flexible TEGs can

Energy harvesting from ambient is important to configuring Wireless Sensor Networks (WSN) for environmental data collecting. In this work, highly flexible thermoelectric generators (TEGs) have been studied and fabricated to supply power to the wireless sensor notes used for data collecting in hot spring environment. The fabricated flexible TEGs can be easily deployed on the uneven surface of heated rocks at the rim of hot springs. By employing the temperature gradient between the hot rock surface and the air, these TEGs can generate power to extend the battery lifetime of the sensor notes and therefore reduce multiple batteries changes where the environment is usually harsh in hot springs. Also, they show great promise for self-powered wireless sensor notes. Traditional thermoelectric material bismuth telluride (Bi2Te3) and advanced MEMS (Microelectromechanical systems) thin film techniques were used for the fabrication. Test results show that when a flexible TEG array with an area of 3.4cm2 was placed on the hot plate surface of 80°C in the air under room temperature, it had an open circuit voltage output of 17.6mV and a short circuit current output of 0.53mA. The generated power was approximately 7mW/m2.

On the other hand, high pressure, temperatures that can reach boiling, and the pH of different hot springs ranging from <2 to >9 make hot spring ecosystem a unique environment that is difficult to study. WSN allows many scientific studies in harsh environments that are not feasible with traditional instrumentation. However, wireless pH sensing for long time in situ data collection is still challenging for two reasons. First, the existing commercial-off-the-shelf pH meters are frequent calibration dependent; second, biofouling causes significant measurement error and drift. In this work, 2-dimentional graphene pH sensors were studied and calibration free graphene pH sensor prototypes were fabricated. Test result shows the resistance of the fabricated device changes linearly with the pH values (in the range of 3-11) in the surrounding liquid environment. Field tests show graphene layer greatly prevented the microbial fouling. Therefore, graphene pH sensors are promising candidates that can be effectively used for wireless pH sensing in exploration of hot spring ecosystems.
ContributorsHan, Ruirui (Author) / Yu, Hongyu (Thesis advisor) / Jiang, Hanqing (Committee member) / Yu, Hongbin (Committee member) / Garnero, Edward (Committee member) / Li, Mingming (Committee member) / Arizona State University (Publisher)
Created2018
153444-Thumbnail Image.png
Description
In this research work, a novel control system strategy for the robust control of an unmanned ground vehicle is proposed. This strategy is motivated by efforts to mitigate the problem for scenarios in which the human operator is unable to properly communicate with the vehicle. This novel control system strategy

In this research work, a novel control system strategy for the robust control of an unmanned ground vehicle is proposed. This strategy is motivated by efforts to mitigate the problem for scenarios in which the human operator is unable to properly communicate with the vehicle. This novel control system strategy consisted of three major components: I.) Two independent intelligent controllers, II.) An intelligent navigation system, and III.) An intelligent controller tuning unit. The inner workings of the first two components are based off the Brain Emotional Learning (BEL), which is a mathematical model of the Amygdala-Orbitofrontal, a region in mammalians brain known to be responsible for emotional learning. Simulation results demonstrated the implementation of the BEL model to be very robust, efficient, and adaptable to dynamical changes in its application as controller and as a sensor fusion filter for an unmanned ground vehicle. These results were obtained with significantly less computational cost when compared to traditional methods for control and sensor fusion. For the intelligent controller tuning unit, the implementation of a human emotion recognition system was investigated. This system was utilized for the classification of driving behavior. Results from experiments showed that the affective states of the driver are accurately captured. However, the driver's affective state is not a good indicator of the driver's driving behavior. As a result, an alternative method for classifying driving behavior from the driver's brain activity was explored. This method proved to be successful at classifying the driver's behavior. It obtained results comparable to the common approach through vehicle parameters. This alternative approach has the advantage of directly classifying driving behavior from the driver, which is of particular use in UGV domain because the operator's information is readily available. The classified driving mode was used tune the controllers' performance to a desired mode of operation. Such qualities are required for a contingency control system that would allow the vehicle to operate with no operator inputs.
ContributorsVargas-Clara, Alvaro (Author) / Redkar, Sangram (Thesis advisor) / McKenna, Anna (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2015
190810-Thumbnail Image.png
Description
Failures in the cold chain, the system of refrigerated storage and transport that provides fresh produce or other essentials to be maintained at desired temperatures and environmental conditions, lead to food and energy waste. The mini container (MC) concept is introduced as an alternative to conventional refrigerated trucks (“reefers”), particularly

Failures in the cold chain, the system of refrigerated storage and transport that provides fresh produce or other essentials to be maintained at desired temperatures and environmental conditions, lead to food and energy waste. The mini container (MC) concept is introduced as an alternative to conventional refrigerated trucks (“reefers”), particularly for small growers. The energy consumption and corresponding GHG emissions for transporting tomatoes in two cities representing contrasting climates is analyzed for conventional reefers and the proposed mini containers. The results show that, for partial reefer loads, using the MCs reduces energy consumption and GHG emissions. The transient behavior of the vapor compression refrigeration cycle is analyzed by considering each component as a “lumped” system, and the resulting sub-models are solved using the Runge Kutta 4th-order method in a MATLAB code at hot and cold ambient temperatures. The time needed to reach steady state temperatures and the temperature values are determined. The maximum required compressor work in the transient phase and at steady state are computed, and as expected, as the ambient temperature increases, both values increase. Finally, the average coefficient of performance (COP) is determined for varying heat transfer coefficient values for the condenser and for the evaporator. The results show that the average COP increases as heat transfer coefficient values for the condenser and the evaporator increase. Starting the system from rest has an adverse effect on the COP due to the higher compressor load needed to change the temperature of the condenser and the evaporator. Finally, the impact on COP is analyzed by redirecting a fraction of the cold exhaust air to provide supplemental cooling of the condenser. It is noted that cooling the condenser improves the system's performance better than cooling the fresh air at 0% of returned air to the system.To sum up, the dissertation shows that the comparison between the conventional reefer and the MC illustrates the promising advantages of the MC, then a transient analysis is developed for deeply understanding the behaviors of the system component parameters, which leads finally to improvements in the system to enhance its performance.
ContributorsSyam, Mahmmoud Muhammed (Author) / Phelan, Patrick (Thesis advisor) / Villalobos, Rene (Thesis advisor) / Huang, Huei-Ping (Committee member) / Bocanegra, Luis (Committee member) / Al Omari, Salah (Committee member) / Arizona State University (Publisher)
Created2023