Matching Items (31)
Filtering by

Clear all filters

Description
Microfluidics is the study of fluid flow at very small scales (micro -- one millionth of a meter) and is prevalent in many areas of science and engineering. Typical applications include lab-on-a-chip devices, microfluidic fuel cells, and DNA separation technologies. Many of these microfluidic devices rely on micron-resolution velocimetry measurements

Microfluidics is the study of fluid flow at very small scales (micro -- one millionth of a meter) and is prevalent in many areas of science and engineering. Typical applications include lab-on-a-chip devices, microfluidic fuel cells, and DNA separation technologies. Many of these microfluidic devices rely on micron-resolution velocimetry measurements to improve microchannel design and characterize existing devices. Methods such as micro particle imaging velocimetry (microPIV) and micro particle tracking velocimetry (microPTV) are mature and established methods for characterization of steady 2D flow fields. Increasingly complex microdevices require techniques that measure unsteady and/or three dimensional velocity fields. This dissertation presents a method for three-dimensional velocimetry of unsteady microflows based on spinning disk confocal microscopy and depth scanning of a microvolume. High-speed 2D unsteady velocity fields are resolved by acquiring images of particle motion using a high-speed CMOS camera and confocal microscope. The confocal microscope spatially filters out of focus light using a rotating disk of pinholes placed in the imaging path, improving the ability of the system to resolve unsteady microPIV measurements by improving the image and correlation signal to noise ratio. For 3D3C measurements, a piezo-actuated objective positioner quickly scans the depth of the microvolume and collects 2D image slices, which are stacked into 3D images. Super resolution microPIV interrogates these 3D images using microPIV as a predictor field for tracking individual particles with microPTV. The 3D3C diagnostic is demonstrated by measuring a pressure driven flow in a three-dimensional expanding microchannel. The experimental velocimetry data acquired at 30 Hz with instantaneous spatial resolution of 4.5 by 4.5 by 4.5 microns agrees well with a computational model of the flow field. The technique allows for isosurface visualization of time resolved 3D3C particle motion and high spatial resolution velocity measurements without requiring a calibration step or reconstruction algorithms. Several applications are investigated, including 3D quantitative fluorescence imaging of isotachophoresis plugs advecting through a microchannel and the dynamics of reaction induced colloidal crystal deposition.
ContributorsKlein, Steven Adam (Author) / Posner, Jonathan D (Thesis advisor) / Adrian, Ronald (Committee member) / Chen, Kangping (Committee member) / Devasenathipathy, Shankar (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2011
152074-Thumbnail Image.png
Description
Locomotion of microorganisms is commonly observed in nature and some aspects of their motion can be replicated by synthetic motors. Synthetic motors rely on a variety of propulsion mechanisms including auto-diffusiophoresis, auto-electrophoresis, and bubble generation. Regardless of the source of the locomotion, the motion of any motor can be characterized

Locomotion of microorganisms is commonly observed in nature and some aspects of their motion can be replicated by synthetic motors. Synthetic motors rely on a variety of propulsion mechanisms including auto-diffusiophoresis, auto-electrophoresis, and bubble generation. Regardless of the source of the locomotion, the motion of any motor can be characterized by the translational and rotational velocity and effective diffusivity. In a uniform environment the long-time motion of a motor can be fully characterized by the effective diffusivity. In this work it is shown that when motors possess both translational and rotational velocity the motor transitions from a short-time diffusivity to a long-time diffusivity at a time of pi/w. The short-time diffusivities are two to three orders of magnitude larger than the diffusivity of a Brownian sphere of the same size, increase linearly with concentration, and scale as v^2/2w. The measured long-time diffusivities are five times lower than the short-time diffusivities, scale as v^2/{2Dr [1 + (w/Dr )^2]}, and exhibit a maximum as a function of concentration. The variation of a colloid's velocity and effective diffusivity to its local environment (e.g. fuel concentration) suggests that the motors can accumulate in a bounded system, analogous to biological chemokinesis. Chemokinesis of organisms is the non-uniform equilibrium concentration that arises from a bounded random walk of swimming organisms in a chemical concentration gradient. In non-swimming organisms we term this response diffusiokinesis. We show that particles that migrate only by Brownian thermal motion are capable of achieving non-uniform pseudo equilibrium distribution in a diffusivity gradient. The concentration is a result of a bounded random-walk process where at any given time a larger percentage of particles can be found in the regions of low diffusivity than in regions of high diffusivity. Individual particles are not trapped in any given region but at equilibrium the net flux between regions is zero. For Brownian particles the gradient in diffusivity is achieved by creating a viscosity gradient in a microfluidic device. The distribution of the particles is described by the Fokker-Planck equation for variable diffusivity. The strength of the probe concentration gradient is proportional to the strength of the diffusivity gradient and inversely proportional to the mean probe diffusivity in the channel in accordance with the no flux condition at steady state. This suggests that Brownian colloids, natural or synthetic, will concentrate in a bounded system in response to a gradient in diffusivity and that the magnitude of the response is proportional to the magnitude of the gradient in diffusivity divided by the mean diffusivity in the channel.
ContributorsMarine, Nathan Arasmus (Author) / Posner, Jonathan D (Thesis advisor) / Adrian, Ronald J (Committee member) / Frakes, David (Committee member) / Phelan, Patrick E (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
133654-Thumbnail Image.png
Description
Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle.

Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle. Using scanning electron microscopy (SEM), imaging analysis is performed to observe crack behavior at ten loading steps throughout the loading and unloading paths. Analysis involves measuring the incremental crack growth and crack tip opening displacement (CTOD) of specimens at loading ratios of 0.1, 0.3, and 0.5. This report defines the relationship between crack growth and the stress intensity factor, K, of the specimens, as well as the relationship between the R-ratio and stress opening level. The crack closure phenomena and effect of microcracks are discussed as they influence the crack growth behavior. This method has previously been used to characterize crack growth in Al 7075-T6. The results for Ti-6Al-4V are compared to these previous findings in order to strengthen conclusions about crack growth behavior.
ContributorsNazareno, Alyssa Noelle (Author) / Liu, Yongming (Thesis director) / Jiao, Yang (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
171473-Thumbnail Image.png
Description
Applications such as heat exchangers, surface-based cellular structures, rotating blades, and waveguides rely on thin metal walls as crucial constituent elements of the structure. The design freedom enabled by laser powder bed fusion has led to an interest in exploiting this technology to further the performance of these components, many

Applications such as heat exchangers, surface-based cellular structures, rotating blades, and waveguides rely on thin metal walls as crucial constituent elements of the structure. The design freedom enabled by laser powder bed fusion has led to an interest in exploiting this technology to further the performance of these components, many of which retain their as-built surface morphologies on account of their design complexity. However, there is limited understanding of how and why mechanical properties vary by wall thickness for specimens that are additively manufactured and maintain an as-printed surface finish. Critically, the contributions of microstructure and morphology to the mechanical behavior of thin wall laser powder bed fusion structures have yet to be systematically identified and decoupled. This work focuses on elucidating the room temperature quasi-static tensile and high cycle fatigue properties of as-printed, thin-wall Inconel 718 fabricated using laser powder bed fusion, with the aim of addressing this critical gap in the literature. Wall thicknesses studied range from 0.3 - 2.0 mm, and the effects of Hot Isostatic Pressing are also examined, with sheet metal specimens used as a baseline for comparison. Statistical analyses are conducted to identify the significance of the dependence of properties on wall thickness and Hot Isostatic Pressing, as well as to examine correlations of these properties to section area, porosity, and surface roughness. A thorough microstructural study is complemented with a first-of-its-kind study of surface morphology to decouple their contributions and identify underlying causes for observed changes in mechanical properties. This thesis finds that mechanical properties in the quasi-static and fatigue framework do not see appreciable declines until specimen thickness is under 0.75 mm in thickness. The added Hot Isostatic Pressing heat treatment effectively closed pores, recrystallized the grain structure, and provided a more homogenous microstructure that benefits the modulus, tensile strength, elongation, and fatigue performance at higher stresses. Stress heterogeneities, primarily caused by surface defects, negatively affected the thinner specimens disproportionately. Without the use of the Hot Isostatic Pressing, the grain structure remained much more refined and benefitted the yield strength and fatigue endurance limit.
ContributorsParadise, Paul David (Author) / Bhate, Dhruv (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Azeredo, Bruno (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2022
171718-Thumbnail Image.png
Description
Fatigue fracture is one of the most common types of mechanical failures seen in structures. Considering that fatigue failures usually initiate on surfaces, it is accepted that surface roughness has a detrimental effect on the fatigue life of components. Irregularities on the surface cause stress concentrations and form nucleation sites

Fatigue fracture is one of the most common types of mechanical failures seen in structures. Considering that fatigue failures usually initiate on surfaces, it is accepted that surface roughness has a detrimental effect on the fatigue life of components. Irregularities on the surface cause stress concentrations and form nucleation sites for cracks. As surface conditions are not always satisfactory, particularly for additively manufactured components, it is necessary to develop a reliable model for fatigue life estimation considering surface roughness effects and assure structural integrity. This research study focuses on extending a previously developed subcycle fatigue crack growth model to include the effects of surface roughness. Unlike other models that consider surface irregularities as series of cracks, the proposed model is unique in the way that it treats the peaks and valleys of surface texture as a single equivalent notch. First, an equivalent stress concentration factor for the roughness was estimated and introduced into an asymptotic interpolation method for notches. Later, a concept called equivalent initial flaw size was incorporated along with linear elastic fracture mechanics to predict the fatigue life of Ti-6Al-4V alloy with different levels of roughness under uniaxial and multiaxial loading conditions. The predicted results were validated using the available literature data. The developed model can also handle variable amplitude loading conditions, which is suggested for future work.
ContributorsKethamukkala, Kaushik (Author) / Liu, Yongming (Thesis advisor) / Jiao, Yang (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2022
171814-Thumbnail Image.png
Description
Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials

Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials under service conditions. This dissertation provides fundamental investigations of several advanced materials: thermoset polymers, a common matrix material for fiber-reinforced composites and nanocomposites; aluminum alloy 7075-T6 (AA7075-T6), a high-performance aerospace material; and ceramic matrix composites (CMCs), an advanced composite for extreme-temperature applications. To understand matrix interactions with various interfaces and nanoinclusions at their fundamental scale, the properties of thermoset polymers are studied at the atomistic scale. An improved proximity-based molecular dynamics (MD) technique for modeling the crosslinking of thermoset polymers is carefully established, enabling realistic curing simulations through its ability to dynamically and probabilistically perform complex topology transformations. The proximity-based MD curing methodology is then used to explore damage initiation and the local anisotropic evolution of mechanical properties in thermoset polymers under uniaxial tension with an emphasis on changes in stiffness through a series of tensile loading, unloading, and reloading experiments. Aluminum alloys in aerospace applications often require a fatigue life of over 109 cycles, which is well over the number of cycles that can be practically tested using conventional fatigue testing equipment. In order to study these high-life regimes, a detailed ultrasonic cycle fatigue study is presented for AA7075-T6 under fully reversed tension-compression loading. The geometric sensitivity, frequency effects, size effects, surface roughness effects, and the corresponding failure mechanisms for ultrasonic fatigue across different fatigue regimes are investigated. Finally, because CMCs are utilized in extreme environments, oxidation plays an important role in their degradation. A multiphysics modeling methodology is thus developed to address the complex coupling between oxidation, mechanical stress, and oxygen diffusion in heterogeneous carbon fiber-reinforced CMC microstructures.
ContributorsSchichtel, Jacob (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Ghoshal, Anindya (Committee member) / Huang, Huei-Ping (Committee member) / Jiao, Yang (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2022
168458-Thumbnail Image.png
Description
Cellular metamaterials arouse broad scientific interests due to the combination of host material and structure together to achieve a wide range of physical properties rarely found in nature. Stochastic foam as one subset has been considered as a competitive candidate for versatile applications including heat exchangers, battery electrodes, automotive, catalyst

Cellular metamaterials arouse broad scientific interests due to the combination of host material and structure together to achieve a wide range of physical properties rarely found in nature. Stochastic foam as one subset has been considered as a competitive candidate for versatile applications including heat exchangers, battery electrodes, automotive, catalyst devices, magnetic shielding, etc. For the engineering of the cellular foam architectures, closed-form models that can be used to predict the mechanical and thermal properties of foams are highly desired especially for the recently developed ultralight weight shellular architectures. Herein, for the first time, a novel packing three-dimensional (3D) hollow pentagonal dodecahedron (HPD) model is proposed to simulate the cellular architecture with hollow struts. An electrochemical deposition process is utilized to manufacture the metallic hollow foam architecture. Mechanical and thermal testing of the as-manufactured foams are carried out to compare with the HPD model. Timoshenko beam theory is utilized to verify and explain the derived power coefficient relation. Our HPD model is proved to accurately capture both the topology and the physical properties of hollow stochastic foam. Understanding how the novel HPD model packing helps break the conventional impression that 3D pentagonal topology cannot fulfill the space as a representative volume element. Moreover, the developed HPD model can predict the mechanical and thermal properties of the manufactured hollow metallic foams and elucidating of how the inevitable manufacturing defects affect the physical properties of the hollow metallic foams. Despite of the macro-scale stochastic foam architecture, nano gradient gyroid lattices are studied using Molecular Dynamics (MD) simulation. The simulation result reveals that, unlike homogeneous architecture, gradient gyroid not only shows novel layer-by-layer deformation behavior, but also processes significantly better energy absorption ability. The deformation behavior and energy absorption are predictable and designable, which demonstrate its highly programmable potential.
ContributorsDai, Rui (Author) / Nian, Qiong (Thesis advisor) / Jiao, Yang (Committee member) / Kwon, Beomjin (Committee member) / Liu, Yongming (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2021
168355-Thumbnail Image.png
Description
Ultra-fast 2D/3D material microstructure reconstruction and quantitative structure-property mapping are crucial components of integrated computational material engineering (ICME). It is particularly challenging for modeling random heterogeneous materials such as alloys, composites, polymers, porous media, and granular matters, which exhibit strong randomness and variations of their material properties due to

Ultra-fast 2D/3D material microstructure reconstruction and quantitative structure-property mapping are crucial components of integrated computational material engineering (ICME). It is particularly challenging for modeling random heterogeneous materials such as alloys, composites, polymers, porous media, and granular matters, which exhibit strong randomness and variations of their material properties due to the hierarchical uncertainties associated with their complex microstructure at different length scales. Such uncertainties also exist in disordered hyperuniform systems that are statistically isotropic and possess no Bragg peaks like liquids and glasses, yet they suppress large-scale density fluctuations in a similar manner as in perfect crystals. The unique hyperuniform long-range order in these systems endow them with nearly optimal transport, electronic and mechanical properties. The concept of hyperuniformity was originally introduced for many-particle systems and has subsequently been generalized to heterogeneous materials such as porous media, composites, polymers, and biological tissues for unconventional property discovery. An explicit mixture random field (MRF) model is proposed to characterize and reconstruct multi-phase stochastic material property and microstructure simultaneously, where no additional tuning step nor iteration is needed compared with other stochastic optimization approaches such as the simulated annealing. The proposed method is shown to have ultra-high computational efficiency and only requires minimal imaging and property input data. Considering microscale uncertainties, the material reliability will face the challenge of high dimensionality. To deal with the so-called “curse of dimensionality”, efficient material reliability analysis methods are developed. Then, the explicit hierarchical uncertainty quantification model and efficient material reliability solvers are applied to reliability-based topology optimization to pursue the lightweight under reliability constraint defined based on structural mechanical responses. Efficient and accurate methods for high-resolution microstructure and hyperuniform microstructure reconstruction, high-dimensional material reliability analysis, and reliability-based topology optimization are developed. The proposed framework can be readily incorporated into ICME for probabilistic analysis, discovery of novel disordered hyperuniform materials, material design and optimization.
ContributorsGao, Yi (Author) / Liu, Yongming (Thesis advisor) / Jiao, Yang (Committee member) / Ren, Yi (Committee member) / Pan, Rong (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2021
161986-Thumbnail Image.png
Description
Damage and failure of advanced composite materials and structures are often manifestations of nonlinear deformation that involve multiple mechanisms and their interactions at the constituent length scale. The presence and interactions of inelastic microscale constituents strongly influence the macroscopic damage anisotropy and useful residual life. The mechano-chemical interactions between constituents

Damage and failure of advanced composite materials and structures are often manifestations of nonlinear deformation that involve multiple mechanisms and their interactions at the constituent length scale. The presence and interactions of inelastic microscale constituents strongly influence the macroscopic damage anisotropy and useful residual life. The mechano-chemical interactions between constituents at the atomistic length scale play a more critical role with nanoengineered composites. Therefore, it is desirable to link composite behavior to specific microscopic constituent properties explicitly and lower length scale features using high-fidelity multiscale modeling techniques.In the research presented in this dissertation, an atomistically-informed multiscale modeling framework is developed to investigate damage evolution and failure in composites with radially-grown carbon nanotube (CNT) architecture. A continuum damage mechanics (CDM) model for the radially-grown CNT interphase region is developed with evolution equations derived using atomistic simulations. The developed model is integrated within a high-fidelity generalized method of cells (HFGMC) micromechanics theory and is used to parametrically investigate the influence of various input micro and nanoscale parameters on the mechanical properties, such as elastic stiffness, strength, and toughness. In addition, the inter-fiber stresses and the onset of damage in the presence of the interphase region are investigated to better understand the energy dissipation mechanisms that attribute to the enhancement in the macroscopic out-of-plane strength and toughness. Note that the HFGMC theory relies heavily on the description of microscale features and requires many internal variables, leading to high computational costs. Therefore, a novel reduced-order model (ROM) is also developed to surrogate full-field nonlinear HFGMC simulations and decrease the computational time and memory requirements of concurrent multiscale simulations significantly. The accurate prediction of composite sandwich materials' thermal stability and durability remains a challenge due to the variability of thermal-related material coefficients at different temperatures and the extensive use of bonded fittings. Consequently, the dissertation also investigates the thermomechanical performance of a complex composite sandwich space structure subject to thermal cycling. Computational finite element (FE) simulations are used to investigate the intrinsic failure mechanisms and damage precursors in honeycomb core composite sandwich structures with adhesively bonded fittings.
ContributorsVenkatesan, Karthik Rajan (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Jiao, Yang (Committee member) / Yekani Fard, Masoud (Committee member) / Stoumbos, Tom (Committee member) / Arizona State University (Publisher)
Created2021
168292-Thumbnail Image.png
Description
In this dissertation, two types of passive air freshener products from Henkel, the wick-based air freshener and gel-based air freshener, are studied for their wicking mechanisms and evaporation performances.The fibrous pad of the wick-based air freshener is a porous medium that absorbs fragrance by capillary force and releases the fragrance

In this dissertation, two types of passive air freshener products from Henkel, the wick-based air freshener and gel-based air freshener, are studied for their wicking mechanisms and evaporation performances.The fibrous pad of the wick-based air freshener is a porous medium that absorbs fragrance by capillary force and releases the fragrance into the ambient air. To investigate the wicking process, a two-dimensional multiphase flow numerical model using COMSOL Multiphysics is built. Saturation and liquid pressure inside the pad are solved. Comparison between the simulation results and experiments shows that evaporation occurs simultaneously with the wicking process. The evaporation performance on the surface of the wicking pad is analyzed based on the kinetic theory, from which the mass flow rate of molecules passing the interface of each pore of the porous medium is obtained. A 3D model coupling the evaporation model and dynamic wicking on the evaporation pad is built to simulate the entire performance of the air freshener to the environment for a long period of time. Diffusion and natural convection effects are included in the simulation. The simulation results match well with the experiments for both the air fresheners placed in a chamber and in the absent of a chamber, the latter of which is subject to indoor airflow. The gel-based air freshener can be constructed as a porous medium in which the solid network of particles spans the volume of the fragrance liquid. To predict the evaporation performance of the gel, two approaches are tested for gel samples in hemispheric shape. The first approach is the sessile drop model commonly used for the drying process of a pure liquid droplet. It can be used to estimate the weight loss rate and time duration of the evaporation. Another approach is to simulate the concentration profile outside the gel and estimate the evaporation rate from the surface of the gel using the kinetic theory. The evaporation area is updated based on the change of pore size. A 3D simulation using the same analysis is further applied to the cylindrical gel sample. The simulation results match the experimental data well.
ContributorsYuan, Jing (Author) / Chen, Kangping (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Liping (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2021