Matching Items (36)
Filtering by

Clear all filters

147892-Thumbnail Image.png
Description

This project examines methods of evaluating the quality of digital UI/UX design including the McKinsey Design Index, heuristics, and design principles.

ContributorsLewis, Janae Ann (Author) / Byrne, Jared (Thesis director) / Roumina, Kavous (Committee member) / Department of Information Systems (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136339-Thumbnail Image.png
Description
The following is a report that will evaluate the microstructure of the nickel-based superalloy Hastelloy X and its relationship to mechanical properties in different load conditions. Hastelloy X is of interest to the company AORA because its strength and oxidation resistance at high temperatures is directly applicable to their needs

The following is a report that will evaluate the microstructure of the nickel-based superalloy Hastelloy X and its relationship to mechanical properties in different load conditions. Hastelloy X is of interest to the company AORA because its strength and oxidation resistance at high temperatures is directly applicable to their needs in a hybrid concentrated solar module. The literature review shows that the microstructure will produce different carbides at various temperatures, which can be beneficial to the strength of the alloy. These precipitates are found along the grain boundaries and act as pins that limit dislocation flow, as well as grain boundary sliding, and improve the rupture strength of the material. Over time, harmful precipitates form which counteract the strengthening effect of the carbides and reduce rupture strength, leading to failure. A combination of indentation and microstructure mapping was used in an effort to link local mechanical behavior to microstructure variability. Electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS) were initially used as a means to characterize the microstructure prior to testing. Then, a series of room temperature Vickers hardness tests at 50 and 500 gram-force were used to evaluate the variation in the local response as a function of indentation size. The room temperature study concluded that both the hardness and standard deviation increased at lower loads, which is consistent with the grain size distribution seen in the microstructure scan. The material was then subjected to high temperature spherical indentation. Load-displacement curves were essential in evaluating the decrease in strength of the material with increasing temperature. Through linear regression of the unloading portion of the curve, the plastic deformation was determined and compared at different temperatures as a qualitative method to evaluate local strength.
ContributorsCelaya, Andrew Jose (Author) / Peralta, Pedro (Thesis director) / Solanki, Kiran (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
Description
The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence

The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence on the mechanical behavior of nanocrystalline metals are explored. Knowing the strain rate dependence of mechanical properties would enable optimization of material selection for different applications and lead to lighter structural components and enhanced sustainability.
ContributorsHall, Andrea Paulette (Author) / Rajagopalan, Jagannathan (Thesis director) / Liao, Yabin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
136830-Thumbnail Image.png
DescriptionThe heat island effect has resulted in an observational increase in averave ambient as well as surface temperatures and current photovoltaic implementation do not migitate this effect. Thus, the feasibility and performance of alternative solutions are explored and determined using theoretical, computational data.
ContributorsCoyle, Aidan John (Author) / Trimble, Steven (Thesis director) / Underwood, Shane (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
136804-Thumbnail Image.png
Description
The quality of user interface designs largely depends on the aptitude of the designer. The ability to generate mental abstract models and characterize a target user audience helps greatly when conceiving a design. The dry cleaning point-of-sale industry lacks quality user interface designs. These impaired interfaces were compared with textbook

The quality of user interface designs largely depends on the aptitude of the designer. The ability to generate mental abstract models and characterize a target user audience helps greatly when conceiving a design. The dry cleaning point-of-sale industry lacks quality user interface designs. These impaired interfaces were compared with textbook design techniques to discover how applicable published interface design concepts are in practice. Four variations of a software package were deployed to end users. Each variation contained different design techniques. Surveyed users responded positively to interface design practices that were consistent and easy to learn. This followed textbook expectations. Users however responded poorly to customization options, an important feature according to textbook material. The study made conservative changes to the four interface variations provided to end-users. A more liberal approach may have yielded additional results.
ContributorsSmith, Andrew David (Author) / Nakamura, Mutsumi (Thesis director) / Gottesman, Aaron (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
137817-Thumbnail Image.png
Description
G3Box's 2013 Marketing Plan outlines a strategic plan and short term operational strategies for the company. The document includes a discussion of the company's decision to enter the market for healthcare facilities in developing counties, and a situation assessment of the market conditions. G3Box is targeting small and large NGOs

G3Box's 2013 Marketing Plan outlines a strategic plan and short term operational strategies for the company. The document includes a discussion of the company's decision to enter the market for healthcare facilities in developing counties, and a situation assessment of the market conditions. G3Box is targeting small and large NGOs that currently provide healthcare facilities in developing countries. The market size for healthcare aid in developing countries is estimated to be $1.7 billion. The plan also analyses the customer's value chain and buying cycle by using voice of the customer data. The strategic position analysis profiles G3Box's competition and discusses the company's differential advantage versus other options for healthcare facilities in developing countries. Next the document discusses G3Box's market strategy and implementation, along with outlining a value proposition for the company. G3Box has two objectives for 2013: 1) Increase sales revenue to $1.3 million and 2) increase market presence to 25%. In order to reach these objectives, G3Box has developed a primary and secondary strategic focus for each objective. The primary strategies are relationship selling and online marketing. The secondary strategies are developing additional value-added activities and public relations.
ContributorsWalters, John (Author) / Denning, Michael (Thesis director) / Ostrom, Lonnie (Committee member) / Carroll, James (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
137819-Thumbnail Image.png
Description
The majority of the 52 photovoltaic installations at ASU are governed by power purchase agreements (PPA) that set a fixed per kilowatt-hour rate at which ASU buys power from the system owner over the period of 15-20 years. PPAs require accurate predictions of the system output to determine the financial

The majority of the 52 photovoltaic installations at ASU are governed by power purchase agreements (PPA) that set a fixed per kilowatt-hour rate at which ASU buys power from the system owner over the period of 15-20 years. PPAs require accurate predictions of the system output to determine the financial viability of the system installations as well as the purchase price. The research was conducted using PPAs and historical solar power production data from the ASU's Energy Information System (EIS). The results indicate that most PPAs slightly underestimate the annual energy yield. However, the modeled power output from PVsyst indicates that higher energy outputs are possible with better system monitoring.
ContributorsVulic, Natasa (Author) / Bowden, Stuart (Thesis director) / Bryan, Harvey (Committee member) / Sharma, Vivek (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
137820-Thumbnail Image.png
Description
The 21st century engineer will face a diverse set of challenges spread out along a broad spectrum of disciplines. Among others, the fields of energy, healthcare, cyberspace, virtual reality, and neuroscience require monumental efforts by the new generation of engineers to meet the demands of a growing society. However the

The 21st century engineer will face a diverse set of challenges spread out along a broad spectrum of disciplines. Among others, the fields of energy, healthcare, cyberspace, virtual reality, and neuroscience require monumental efforts by the new generation of engineers to meet the demands of a growing society. However the most important, and likely the most under recognized, challenge lies in developing advanced personalized learning. It is the core foundation from which the rest of the challenges can be accomplished. Without an effective method of teaching engineering students how to realize these grand challenges, the knowledge pool from which to draw new innovations and discoveries will be greatly diminished. This paper introduces the Inventors Workshop (IW), a hands-on, passion-based approach to personalized learning. It is intended to serve as a manual that will inform the next generation of student leaders and inventioneers about the core concepts the Inventors Workshop was built upon, and how to continue improvement into the future. Due to the inherent complexities in the grand challenge of personalized learning, the IW has developed a multifaceted solution that is difficult to explain in a single phrase. To enable comprehension of the IW's full vision, the process undergone to date of establishing and expanding the IW is described. In addition, research has been conducted to determine a variety of paths the Inventors Workshop may utilize in future expansion. Each of these options is explored and related to the core foundations of the IW to assist future leaders and partners in effectively improving personalized learning at ASU and beyond.
ContributorsEngelhoven, V. Logan (Author) / Burleson, Winslow (Thesis director) / Peck, Sidnee (Committee member) / Fortun, A. L. Cecil (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
137541-Thumbnail Image.png
Description
Over the course of computing history there have been many ways for humans to pass information to computers. These different input types, at first, tended to be used one or two at a time for the users interfacing with computers. As time has progressed towards the present, however, many devices

Over the course of computing history there have been many ways for humans to pass information to computers. These different input types, at first, tended to be used one or two at a time for the users interfacing with computers. As time has progressed towards the present, however, many devices are beginning to make use of multiple different input types, and will likely continue to do so. With this happening, users need to be able to interact with single applications through a variety of ways without having to change the design or suffer a loss of functionality. This is important because having only one user interface, UI, across all input types is makes it easier for the user to learn and keeps all interactions consistent across the application. Some of the main input types in use today are touch screens, mice, microphones, and keyboards; all seen in Figure 1 below. Current design methods tend to focus on how well the users are able to learn and use a computing system. It is good to focus on those aspects, but it is important to address the issues that come along with using different input types, or in this case, multiple input types. UI design for touch screens, mice, microphones, and keyboards each requires satisfying a different set of needs. Due to this trend in single devices being used in many different input configurations, a "fully functional" UI design will need to address the needs of multiple input configurations. In this work, clashing concerns are described for the primary input sources for computers and suggests methodologies and techniques for designing a single UI that is reasonable for all of the input configurations.
ContributorsJohnson, David Bradley (Author) / Calliss, Debra (Thesis director) / Wilkerson, Kelly (Committee member) / Walker, Erin (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
137570-Thumbnail Image.png
Description
The data and results presented in this paper are part of a continuing effort to innovate and pioneer the future of engineering. The purpose of the following is to demonstrate the mechanical buckling characteristics in stiff thin film and soft substrate systems, and the importance of controlling them. In today's

The data and results presented in this paper are part of a continuing effort to innovate and pioneer the future of engineering. The purpose of the following is to demonstrate the mechanical buckling characteristics in stiff thin film and soft substrate systems, and the importance of controlling them. In today's engineering research, wrinkling in systems in beginning to be viewed as a means for engineering innovation rather than failure. This research is important to further progress the possible applications the technology proposes, such as flexible electronics and tunable adhesives. This work utilizes a cost efficient and relatively easy method for generating and analyzing buckled systems. Ultra violate oxidation at ambient temperatures is exploited to create a stiff thin surface on rubber like polydimethylsiloxane, and couple with strain induction wrinkles are generated. Wrinkle characteristics such as amplitude, wavelengths and wetting properties were investigated. In simple cases, trends were confirmed that increased oxidation relates to increased buckle wavelengths, and increase in strain corresponds to a decrease in wavelength. Hierarchical buckles were produced in one-dimensional systems treated with a multi-step method; these were the first to be generated in the ASU labs. Unique topographic changes were produced in two-dimensional systems treated with the same method. Honeycomb or dome like structures were noted to occur, important as they undergo a different energy-reliving configuration compared to traditional parallel buckles. The information provided characterizes many aspects of the buckle phenomena and will allow for further inquiry into specific functions utilizing the technology to continue advancements in engineering.
ContributorsValacich, Michael James (Author) / Jiang, Hanqing (Thesis director) / Yu, Hongyu (Committee member) / Teng, Ma (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05