Matching Items (34)
Filtering by

Clear all filters

150385-Thumbnail Image.png
Description
In nearly all commercially successful internal combustion engine applications, the slider crank mechanism is used to convert the reciprocating motion of the piston into rotary motion. The hypocycloid mechanism, wherein the crankshaft is replaced with a novel gearing arrangement, is a viable alternative to the slider crank mechanism. The geared

In nearly all commercially successful internal combustion engine applications, the slider crank mechanism is used to convert the reciprocating motion of the piston into rotary motion. The hypocycloid mechanism, wherein the crankshaft is replaced with a novel gearing arrangement, is a viable alternative to the slider crank mechanism. The geared hypocycloid mechanism allows for linear motion of the connecting rod and provides a method for perfect balance with any number of cylinders including single cylinder applications. A variety of hypocycloid engine designs and research efforts have been undertaken and produced successful running prototypes. Wiseman Technologies, Inc provided one of these prototypes to this research effort. This two-cycle 30cc half crank hypocycloid engine has shown promise in several performance categories including balance and efficiency. To further investigate its potential a more thorough and scientific analysis was necessary and completed in this research effort. The major objective of the research effort was to critically evaluate and optimize the Wiseman prototype for maximum performance in balance, efficiency, and power output. A nearly identical slider crank engine was used extensively to establish baseline performance data and make comparisons. Specialized equipment and methods were designed and built to collect experimental data on both engines. Simulation and mathematical models validated by experimental data collection were used to better quantify performance improvements. Modifications to the Wiseman prototype engine improved balance by 20 to 50% (depending on direction) and increased peak power output by 24%.
ContributorsConner, Thomas (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Georgeou, Trian (Committee member) / Arizona State University (Publisher)
Created2011
150105-Thumbnail Image.png
Description
The objective of this work is to develop a Stop-Rotor Multimode UAV. This UAV is capable of vertical take-off and landing like a helicopter and can convert from a helicopter mode to an airplane mode in mid-flight. Thus, this UAV can hover as a helicopter and achieve high mission range

The objective of this work is to develop a Stop-Rotor Multimode UAV. This UAV is capable of vertical take-off and landing like a helicopter and can convert from a helicopter mode to an airplane mode in mid-flight. Thus, this UAV can hover as a helicopter and achieve high mission range of an airplane. The stop-rotor concept implies that in mid-flight the lift generating helicopter rotor stops and rotates the blades into airplane wings. The thrust in airplane mode is then provided by a pusher propeller. The aircraft configuration presents unique challenges in flight dynamics, modeling and control. In this thesis a mathematical model along with the design and simulations of a hover control will be presented. In addition, the discussion of the performance in fixed-wing flight, and the autopilot architecture of the UAV will be presented. Also presented, are some experimental "conversion" results where the Stop-Rotor aircraft was dropped from a hot air balloon and performed a successful conversion from helicopter to airplane mode.
ContributorsVargas-Clara, Alvaro (Author) / Redkar, Sangram (Thesis advisor) / Macia, Narciso (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2011
152349-Thumbnail Image.png
Description
As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem

As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem of redundant robot arms that results to anthropomorphic configurations. The swivel angle of the elbow was used as a human arm motion parameter for the robot arm to mimic. The swivel angle is defined as the rotation angle of the plane defined by the upper and lower arm around a virtual axis that connects the shoulder and wrist joints. Using kinematic data recorded from human subjects during every-day life tasks, the linear sensorimotor transformation model was validated and used to estimate the swivel angle, given the desired end-effector position. Defining the desired swivel angle simplifies the kinematic redundancy of the robot arm. The proposed method was tested with an anthropomorphic redundant robot arm and the computed motion profiles were compared to the ones of the human subjects. This thesis shows that the method computes anthropomorphic configurations for the robot arm, even if the robot arm has different link lengths than the human arm and starts its motion at random configurations.
ContributorsWang, Yuting (Author) / Artemiadis, Panagiotis (Thesis advisor) / Mignolet, Marc (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
151787-Thumbnail Image.png
Description
Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot motions. However, this requires a lot of training and validation

Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot motions. However, this requires a lot of training and validation data sets, while the parameters of the decoding function are specific for each subject. In this thesis we propose a new methodology that doesn't require training and is not user-specific. The main idea is to supplement the decoding functional error with the human ability to learn inverse model of an arbitrary mapping function. We have shown that the subjects gradually learned the control strategy and their learning rates improved. We also worked on identifying an optimized control scheme that would be even more effective and easy to learn for the subjects. Optimization was done by taking into account that muscles act in synergies while performing a motion task. The low-dimensional representation of the neural activity was used to control a two-dimensional task. Results showed that in the case of reduced dimensionality mapping, the subjects were able to learn to control the device in a slower pace, however they were able to reach and retain the same level of controllability. To summarize, we were able to build an EMG-based controller for robot devices that would work for any subject, without any training or decoding function, suggesting human-embedded controllers for robotic devices.
ContributorsAntuvan, Chris Wilson (Author) / Artemiadis, Panagiotis (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
151803-Thumbnail Image.png
Description
Humans have an inherent capability of performing highly dexterous and skillful tasks with their arms, involving maintaining posture, movement and interacting with the environment. The latter requires for them to control the dynamic characteristics of the upper limb musculoskeletal system. Inertia, damping and stiffness, a measure of mechanical impedance, gives

Humans have an inherent capability of performing highly dexterous and skillful tasks with their arms, involving maintaining posture, movement and interacting with the environment. The latter requires for them to control the dynamic characteristics of the upper limb musculoskeletal system. Inertia, damping and stiffness, a measure of mechanical impedance, gives a strong representation of these characteristics. Many previous studies have shown that the arm posture is a dominant factor for determining the end point impedance in a horizontal plane (transverse plane). The objective of this thesis is to characterize end point impedance of the human arm in the three dimensional (3D) space. Moreover, it investigates and models the control of the arm impedance due to increasing levels of muscle co-contraction. The characterization is done through experimental trials where human subjects maintained arm posture, while perturbed by a robot arm. Moreover, the subjects were asked to control the level of their arm muscles' co-contraction, using visual feedback of their muscles' activation, in order to investigate the effect of the muscle co-contraction on the arm impedance. The results of this study showed a very interesting, anisotropic increase of the arm stiffness due to muscle co-contraction. This can lead to very useful conclusions about the arm biomechanics as well as many implications for human motor control and more specifically the control of arm impedance through muscle co-contraction. The study finds implications for the EMG-based control of robots that physically interact with humans.
ContributorsPatel, Harshil Naresh (Author) / Artemiadis, Panagiotis (Thesis advisor) / Berman, Spring (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
152181-Thumbnail Image.png
Description
The objective of this thesis was to compare various approaches for classification of the `good' and `bad' parts via non-destructive resonance testing methods by collecting and analyzing experimental data in the frequency and time domains. A Laser Scanning Vibrometer was employed to measure vibrations samples in order to determine the

The objective of this thesis was to compare various approaches for classification of the `good' and `bad' parts via non-destructive resonance testing methods by collecting and analyzing experimental data in the frequency and time domains. A Laser Scanning Vibrometer was employed to measure vibrations samples in order to determine the spectral characteristics such as natural frequencies and amplitudes. Statistical pattern recognition tools such as Hilbert Huang, Fisher's Discriminant, and Neural Network were used to identify and classify the unknown samples whether they are defective or not. In this work, a Finite Element Analysis software packages (ANSYS 13.0 and NASTRAN NX8.0) was used to obtain estimates of resonance frequencies in `good' and `bad' samples. Furthermore, a system identification approach was used to generate Auto-Regressive-Moving Average with exogenous component, Box-Jenkins, and Output Error models from experimental data that can be used for classification
ContributorsJameel, Osama (Author) / Redkar, Sangram (Thesis advisor) / Arizona State University (Publisher)
Created2013
150756-Thumbnail Image.png
Description
Energy efficient design and management of data centers has seen considerable interest in the recent years owing to its potential to reduce the overall energy consumption and thereby the costs associated with it. Therefore, it is of utmost importance that new methods for improved physical design of data centers, resource

Energy efficient design and management of data centers has seen considerable interest in the recent years owing to its potential to reduce the overall energy consumption and thereby the costs associated with it. Therefore, it is of utmost importance that new methods for improved physical design of data centers, resource management schemes for efficient workload distribution and sustainable operation for improving the energy efficiency, be developed and tested before implementation on an actual data center. The BlueTool project, provides such a state-of-the-art platform, both software and hardware, to design and analyze energy efficiency of data centers. The software platform, namely GDCSim uses cyber-physical approach to study the physical behavior of the data center in response to the management decisions by taking into account the heat recirculation patterns in the data center room. Such an approach yields best possible energy savings owing to the characterization of cyber-physical interactions and the ability of the resource management to take decisions based on physical behavior of data centers. The GDCSim mainly uses two Computational Fluid Dynamics (CFD) based cyber-physical models namely, Heat Recirculation Matrix (HRM) and Transient Heat Distribution Model (THDM) for thermal predictions based on different management schemes. They are generated using a model generator namely BlueSim. To ensure the accuracy of the thermal predictions using the GDCSim, the models, HRM and THDM and the model generator, BlueSim need to be validated experimentally. For this purpose, the hardware platform of the BlueTool project, namely the BlueCenter, a mini data center, can be used. As a part of this thesis, the HRM and THDM were generated using the BlueSim and experimentally validated using the BlueCenter. An average error of 4.08% was observed for BlueSim, 5.84% for HRM and 4.24% for THDM. Further, a high initial error was observed for transient thermal prediction, which is due to the inability of BlueSim to account for the heat retained by server components.
ContributorsGilbert, Rose Robin (Author) / Gupta, Sandeep K.S (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2012
151079-Thumbnail Image.png
Description
In this work, we focused on the stability and reducibility of quasi-periodic systems. We examined the quasi-periodic linear Mathieu equation of the form x ̈+(ä+ϵ[cost+cosùt])x=0 The stability of solutions of Mathieu's equation as a function of parameter values (ä,ϵ) had been analyzed in this work. We used the Floquet type

In this work, we focused on the stability and reducibility of quasi-periodic systems. We examined the quasi-periodic linear Mathieu equation of the form x ̈+(ä+ϵ[cost+cosùt])x=0 The stability of solutions of Mathieu's equation as a function of parameter values (ä,ϵ) had been analyzed in this work. We used the Floquet type theory to generate stability diagrams which were used to determine the bounded regions of stability in the ä-ù plane for fixed ϵ. In the case of reducibility, we first applied the Lyapunov- Floquet (LF) transformation and modal transformation, which converted the linear part of the system into the Jordan form. Very importantly, quasi-periodic near-identity transformation was applied to reduce the system equations to a constant coefficient system by solving homological equations via harmonic balance. In this process we obtained the reducibility/resonance conditions that needed to be satisfied to convert a quasi-periodic system to a constant one.
ContributorsEzekiel, Evi (Author) / Redkar, Sangram (Thesis advisor) / Meitz, Robert (Committee member) / Nam, Changho (Committee member) / Arizona State University (Publisher)
Created2012
156718-Thumbnail Image.png
Description
Lower-limb wearable assistive robots could alter the users gait kinematics by inputting external power, which can be interpreted as mechanical perturbation to subject normal gait. The change in kinematics may affect the dynamic stability. This work attempts to understand the effects of different physical assistance from these robots on the

Lower-limb wearable assistive robots could alter the users gait kinematics by inputting external power, which can be interpreted as mechanical perturbation to subject normal gait. The change in kinematics may affect the dynamic stability. This work attempts to understand the effects of different physical assistance from these robots on the gait dynamic stability.

A knee exoskeleton and ankle assistive device (Robotic Shoe) are developed and used to provide walking assistance. The knee exoskeleton provides personalized knee joint assistive torque during the stance phase. The robotic shoe is a light-weighted mechanism that can store the potential energy at heel strike and release it by using an active locking mechanism at the terminal stance phase to provide push-up ankle torque and assist the toe-off. Lower-limb Kinematic time series data are collected for subjects wearing these devices in the passive and active mode. The changes of kinematics with and without these devices on lower-limb motion are first studied. Orbital stability, as one of the commonly used measure to quantify gait stability through calculating Floquet Multipliers (FM), is employed to asses the effects of these wearable devices on gait stability. It is shown that wearing the passive knee exoskeleton causes less orbitally stable gait for users, while the knee joint active assistance improves the orbital stability compared to passive mode. The robotic shoe only affects the targeted joint (right ankle) kinematics, and wearing the passive mechanism significantly increases the ankle joint FM values, which indicates less walking orbital stability. More analysis is done on a mechanically perturbed walking public data set, to show that orbital stability can quantify the effects of external mechanical perturbation on gait dynamic stability. This method can further be used as a control design tool to ensure gait stability for users of lower-limb assistive devices.
ContributorsRezayat Sorkhabadi, Seyed Mostafa (Author) / Zhang, Wenlong (Thesis advisor) / Lee, Hyunglae (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2018
157187-Thumbnail Image.png
Description
One type of assistive device for the blind has attempted to convert visual information into information that can be perceived through another sense, such as touch or hearing. A vibrotactile haptic display assistive device consists of an array of vibrating elements placed against the skin, allowing the blind individual to

One type of assistive device for the blind has attempted to convert visual information into information that can be perceived through another sense, such as touch or hearing. A vibrotactile haptic display assistive device consists of an array of vibrating elements placed against the skin, allowing the blind individual to receive visual information through touch. However, these approaches have two significant technical challenges: large vibration element size and the number of microcontroller pins required for vibration control, both causing excessively low resolution of the device. Here, I propose and investigate a type of high-resolution vibrotactile haptic display which overcomes these challenges by utilizing a ‘microbeam’ as the vibrating element. These microbeams can then be actuated using only one microcontroller pin connected to a speaker or surface transducer. This approach could solve the low-resolution problem currently present in all haptic displays. In this paper, the results of an investigation into the manufacturability of such a device, simulation of the vibrational characteristics, and prototyping and experimental validation of the device concept are presented. The possible reasons of the frequency shift between the result of the forced or free response of beams and the frequency calculated based on a lumped mass approximation are investigated. It is found that one of the important reasons for the frequency shift is the size effect, the dependency of the elastic modulus on the size and kind of material. This size effect on A2 tool steel for Micro-Meso scale cantilever beams for the proposed system is investigated.
ContributorsWi, Daehan (Author) / SODEMANN, ANGELA A (Thesis advisor) / Redkar, Sangram (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2019