Matching Items (44)
Filtering by

Clear all filters

150104-Thumbnail Image.png
Description
A full understanding of material behavior is important for the prediction of residual useful life of aerospace structures via computational modeling. In particular, the influence of rolling-induced anisotropy on fatigue properties has not been studied extensively and it is likely to have a meaningful effect. In this work, fatigue behavior

A full understanding of material behavior is important for the prediction of residual useful life of aerospace structures via computational modeling. In particular, the influence of rolling-induced anisotropy on fatigue properties has not been studied extensively and it is likely to have a meaningful effect. In this work, fatigue behavior of a wrought Al alloy (2024-T351) is studied using notched uniaxial samples with load axes along either the longitudinal or transverse direction, and center notched biaxial samples (cruciforms) with a uniaxial stress state of equivalent amplitude about the bore. Local composition and crystallography were quantified before testing using Energy Dispersive Spectroscopy and Electron Backscattering Diffraction. Interrupted fatigue testing at stresses close to yielding was performed on the samples to nucleate and propagate short cracks and nucleation sites were located and characterized using standard optical and Scanning Electron Microscopy. Results show that crack nucleation occurred due to fractured particles for longitudinal dogbone/cruciform samples; while transverse samples nucleated cracks by debonded and fractured particles. Change in crack nucleation mechanism is attributed to dimensional change of particles with respect to the material axes caused by global anisotropy. Crack nucleation from debonding reduced life till matrix fracture because debonded particles are sharper and generate matrix cracks sooner than their fractured counterparts. Longitudinal samples experienced multisite crack initiation because of reduced cross sectional areas of particles parallel to the loading direction. Conversely the favorable orientation of particles in transverse samples reduced instances of particle fracture eliminating multisite cracking and leading to increased fatigue life. Cyclic tests of cruciform samples showed that crack growth favors longitudinal and transverse directions with few instances of crack growth 45 degrees (diagonal) to the rolling direction. The diagonal crack growth is attributed to stronger influences of local anisotropy on crack nucleation. It was observed that majority of the time crack nucleation is governed by the mixed influences of global and local anisotropies. Measurements of crystal directions parallel to the load on main crack paths revealed directions clustered near the {110} planes and high index directions. This trend is attributed to environmental effects as a result of cyclic testing in air.
ContributorsMakaš, Admir (Author) / Peralta, Pedro D. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
151523-Thumbnail Image.png
Description
Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and

Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and to formulate continuum models that account for the variability of the damage process due to microstructural heterogeneity. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation. Correlations have been found between the damage sites and the surrounding microstructure to determine the preferred sites of spall damage, since it tends to localize at and around the regions of intrinsic defects such as grain boundaries and triple points. However, considerable amount of work still has to be done in this regard to determine the physics driving the damage at these intrinsic weak sites in the microstructure. The main focus of this research work is to understand the physical mechanisms behind the damage localization at these preferred sites. A crystal plasticity constitutive model is implemented with different damage criteria to study the effects of stress concentration and strain localization at the grain boundaries. A cohesive zone modeling technique is used to include the intrinsic strength of the grain boundaries in the simulations. The constitutive model is verified using single elements tests, calibrated using single crystal impact experiments and validated using bicrystal and multicrystal impact experiments. The results indicate that strain localization is the predominant driving force for damage initiation and evolution. The microstructural effects on theses damage sites are studied to attribute the extent of damage to microstructural features such as grain orientation, misorientation, Taylor factor and the grain boundary planes. The finite element simulations show good correlation with the experimental results and can be used as the preliminary step in developing accurate probabilistic models for damage nucleation.
ContributorsKrishnan, Kapil (Author) / Peralta, Pedro (Thesis advisor) / Mignolet, Marc (Committee member) / Sieradzki, Karl (Committee member) / Jiang, Hanqing (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2013
152030-Thumbnail Image.png
Description
Recently, the use of zinc oxide (ZnO) nanowires as an interphase in composite materials has been demonstrated to increase the interfacial shear strength between carbon fiber and an epoxy matrix. In this research work, the strong adhesion between ZnO and carbon fiber is investigated to elucidate the interactions at the

Recently, the use of zinc oxide (ZnO) nanowires as an interphase in composite materials has been demonstrated to increase the interfacial shear strength between carbon fiber and an epoxy matrix. In this research work, the strong adhesion between ZnO and carbon fiber is investigated to elucidate the interactions at the interface that result in high interfacial strength. First, molecular dynamics (MD) simulations are performed to calculate the adhesive energy between bare carbon and ZnO. Since the carbon fiber surface has oxygen functional groups, these were modeled and MD simulations showed the preference of ketones to strongly interact with ZnO, however, this was not observed in the case of hydroxyls and carboxylic acid. It was also found that the ketone molecules ability to change orientation facilitated the interactions with the ZnO surface. Experimentally, the atomic force microscope (AFM) was used to measure the adhesive energy between ZnO and carbon through a liftoff test by employing highly oriented pyrolytic graphite (HOPG) substrate and a ZnO covered AFM tip. Oxygen functionalization of the HOPG surface shows the increase of adhesive energy. Additionally, the surface of ZnO was modified to hold a negative charge, which demonstrated an increase in the adhesive energy. This increase in adhesion resulted from increased induction forces given the relatively high polarizability of HOPG and the preservation of the charge on ZnO surface. It was found that the additional negative charge can be preserved on the ZnO surface because there is an energy barrier since carbon and ZnO form a Schottky contact. Other materials with the same ionic properties of ZnO but with higher polarizability also demonstrated good adhesion to carbon. This result substantiates that their induced interaction can be facilitated not only by the polarizability of carbon but by any of the materials at the interface. The versatility to modify the magnitude of the induced interaction between carbon and an ionic material provides a new route to create interfaces with controlled interfacial strength.
ContributorsGalan Vera, Magdian Ulises (Author) / Sodano, Henry A (Thesis advisor) / Jiang, Hanqing (Committee member) / Solanki, Kiran (Committee member) / Oswald, Jay (Committee member) / Speyer, Gil (Committee member) / Arizona State University (Publisher)
Created2013
149429-Thumbnail Image.png
Description
As miniature and high-heat-dissipation equipment became major manufacture and operation trends, heat-rejecting and heat-transport solutions faced increasing challenges. In the 1970s, researchers showed that particle suspensions can enhance the heat transfer efficiency of their base fluids. However, their work was hindered by the sedimentation and erosion issues

As miniature and high-heat-dissipation equipment became major manufacture and operation trends, heat-rejecting and heat-transport solutions faced increasing challenges. In the 1970s, researchers showed that particle suspensions can enhance the heat transfer efficiency of their base fluids. However, their work was hindered by the sedimentation and erosion issues caused by the relatively large particle sizes in their suspensions. More recently, nanofluids--suspensions of nanoparticles in liquids-were proposed to be applied as heat transfer fluids, because of the enhanced thermal conductivity that has generally been observed. However, in practical applications, a heat conduction mechanism may not be sufficient for cooling high-heat-dissipation devices such as microelectronics or powerful optical equipment. Thus, the thermal performance under convective, i.e., flowing heat transfer conditions becomes of primary interest. In addition, with the presence of nanoparticles, the viscosity of a nanofluid is greater than its base fluid and deviates from Einstein's classical prediction. Through the use of a test rig designed and assembled as part of this dissertation, the viscosity and heat transfer coefficient of nanofluids can be simultaneously determined by pressure drop and temperature difference measurements under laminar flow conditions. An extensive characterization of the nanofluid samples, including pH, electrical conductivity, particle sizing and zeta potential, is also documented. Results indicate that with constant wall heat flux, the relative viscosities of nanofluid decrease with increasing volume flow rate. The results also show, based on Brenner's model, that the nanofluid viscosity can be explained in part by the aspect ratio of the aggregates. The measured heat transfer coefficient values for nanofluids are generally higher than those for base fluids. In the developing region, this can be at least partially explained by Prandtl number effects. The Nusselt number ( Nu ) results for nanofluid show that Nu increases with increasing nanofluid volume fraction and volume flow rate. However, only DI-H2O (deionized water) and 5/95 PG/H2O (PG = propylene glycol) based nanofluids with 1 vol% nanoparticle loading have Nu greater than the theoretical prediction, 4.364. It is suggested that the nanofluid has potential to be applied within the thermally developing region when utilizing the nanofluid as a heat transfer liquid in a circular tube. The suggested Reynold's number is greater than 100.
ContributorsLai, Wei-Yun (Author) / Phelan, Patrick E (Thesis advisor) / Chen, Kangping (Committee member) / Hayes, Mark (Committee member) / Prasher, Ravi S (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2010
135315-Thumbnail Image.png
Description
The goal of this research is to compare the mechanical properties of CP-Ti and Ti-O and to understand the relationship between a material's microstructure and its response to fatigue. Titanium has been selected due to its desirable properties and applicability in several engineering fields. Both samples are polished and etched

The goal of this research is to compare the mechanical properties of CP-Ti and Ti-O and to understand the relationship between a material's microstructure and its response to fatigue. Titanium has been selected due to its desirable properties and applicability in several engineering fields. Both samples are polished and etched in order to visualize and characterize the microstructure and its features. The samples then undergo strain-controlled fatigue tests for several thousand cycles. Throughout testing, images of the samples are taken at zero and maximum load for DIC analysis. The DIC results can be used to study the local strains of the samples. The DIC analysis performed on the CP-Ti sample and presented in this study will be used to understand how the addition of oxygen in the Ti-O impacts fatigue response. The outcome of this research can be used to develop long-lasting, high strength materials.
ContributorsRiley, Erin Ashland (Author) / Solanki, Kiran (Thesis director) / Oswald, Jay (Committee member) / School of Art (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
171750-Thumbnail Image.png
Description
An approach for modeling resistance spot welding of thin-gauge, dissimilar metal sheets with high electrical conductivity is presented in this work. In this scenario, the electrical and thermal contact resistances play a dominant role in heat generation and temperature evolution within the workpieces; these interactions ultimately control the weld geometry.

An approach for modeling resistance spot welding of thin-gauge, dissimilar metal sheets with high electrical conductivity is presented in this work. In this scenario, the electrical and thermal contact resistances play a dominant role in heat generation and temperature evolution within the workpieces; these interactions ultimately control the weld geometry. Existing models are limited in modeling these interactions, especially for dissimilar and thin-gauge metal sheets, and at higher temperatures when the multiphysics becomes increasingly interdependent. The approach presented here uses resistivity measurements, combined with thermal modeling and known bulk resistance relationships to infer the relationship between electrical contact resistance and temperature for each of the different material interfaces in the welding process. Corresponding thermal contact resistance models are developed using the Wiedemann-Franz law combined with a scaling factor to account for nonmetallic behavior. Experimental and simulation voltage histories and final weld diameter were used to validate this model for a Cu/Al/Cu and a Cu/Al/Cu/Al/Cu stack-ups. This model was then used to study the effect of Ni-P coating on resistance spot welding of Cu and Al sheets in terms of weld formation, mechanical deformation, and contact resistance. Contact resistance and current density distribution are highly dependent on contact pressure and temperature distribution at the Cu/Al interface in the presence of alumina. The Ni-P coating helps evolve a partially-bonded donut shaped weld into a fully-bonded hourglass-shaped weld by decreasing the dependence of contact resistance and current density distribution on contact pressure and temperature distribution at the Cu/Al interface. This work also provides an approach to minimize distortion due to offset-rolling in thin aluminum sheets by optimizing the stiffening feature geometry. The distortion is minimized using particle swarm optimization. The objective function is a function of distortion and smallest radius of curvature in the geometry. Doubling the minimum allowable radius of curvature nearly doubles the reduction in distortion from the stadium shape for a quarter model. Reduction in distortion in the quarter model extends to the full-scale model with the best design performing 5.3% and 27% better than the corresponding nominal design for a quarter and full-scale model, respectively.
ContributorsVeeresh, Pawan (Author) / Oswald, Jay (Thesis advisor) / Carlson, Blair (Committee member) / Hoover, Christian (Committee member) / Rajagopalan, Jagannathan (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2022
171947-Thumbnail Image.png
Description
Aromatic polymers, with benzene-like rings in their main chains, include materials such as polyurea, an amorphous elastomer capable of dissipating large amounts of energy under dynamic loading, which makes it a promising coating for defensive systems. Although computational research exists that investigates the atomic-level response of polyurea and other amorphous

Aromatic polymers, with benzene-like rings in their main chains, include materials such as polyurea, an amorphous elastomer capable of dissipating large amounts of energy under dynamic loading, which makes it a promising coating for defensive systems. Although computational research exists that investigates the atomic-level response of polyurea and other amorphous aromatic polymers to extreme conditions, there is little experimental work to validate these models 1) at the atomic-scale and 2) under high pressures characteristic of extreme dynamic loading. Understanding structure-property relationships at the atomic-level is important for polymers, considering many of them undergo pressure and temperature-induced structural transformations, which must be understood to formulate accurate predictive models. This work aims to gain a deeper understanding of the high-pressure structural response of aromatic polymers at the atomic-level, with emphasis into the mechanisms associated with high-pressure transformations. Hence, atomic-level structural data at high pressures was obtained in situ via multiangle energy dispersive X-ray diffraction (EDXD) experiments at the Advanced Photon Source (APS) for polyurea and another amorphous aromatic polymer, polysulfone, chosen as a reference due to its relatively simple structure. Pressures up to 6 GPa were applied using a Paris Edinburgh (PE) hydraulic press at room temperature. Select polyurea samples were also heated to 277 °C at 6 GPa. The resulting structure factors and pair distribution functions, along with molecular dynamics simulations of polyurea provided by collaborators, suggest that the structures of both polymers are stable up to 6 GPa, aside from reductions in free-volume between polymer backbones. As higher pressures (≲ 32 GPa) were applied using diamond anvils in combination with the PE press, indications of structural transformations were observed in both polymers that appear similar in nature to the sp2-sp3 hybridization in compressed carbon. The transformation occurs gradually up to at least ~ 26 GPa in PSF, while it does not progress past ~ 15 GPa in polyurea. The changes are largely reversible, especially in polysulfone, consistent with pressure-driven, reversible graphite-diamond transformations in the absence of applied temperature. These results constitute some of the first in situ observations of the mechanisms that drive pressure-induced structural transformations in aromatic polymers.
ContributorsEastmond, Tyler (Author) / Peralta, Pedro (Thesis advisor) / Hoover, Christian (Committee member) / Hrubiak, Rostislav (Committee member) / Mignolet, Marc (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2022
171814-Thumbnail Image.png
Description
Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials

Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials under service conditions. This dissertation provides fundamental investigations of several advanced materials: thermoset polymers, a common matrix material for fiber-reinforced composites and nanocomposites; aluminum alloy 7075-T6 (AA7075-T6), a high-performance aerospace material; and ceramic matrix composites (CMCs), an advanced composite for extreme-temperature applications. To understand matrix interactions with various interfaces and nanoinclusions at their fundamental scale, the properties of thermoset polymers are studied at the atomistic scale. An improved proximity-based molecular dynamics (MD) technique for modeling the crosslinking of thermoset polymers is carefully established, enabling realistic curing simulations through its ability to dynamically and probabilistically perform complex topology transformations. The proximity-based MD curing methodology is then used to explore damage initiation and the local anisotropic evolution of mechanical properties in thermoset polymers under uniaxial tension with an emphasis on changes in stiffness through a series of tensile loading, unloading, and reloading experiments. Aluminum alloys in aerospace applications often require a fatigue life of over 109 cycles, which is well over the number of cycles that can be practically tested using conventional fatigue testing equipment. In order to study these high-life regimes, a detailed ultrasonic cycle fatigue study is presented for AA7075-T6 under fully reversed tension-compression loading. The geometric sensitivity, frequency effects, size effects, surface roughness effects, and the corresponding failure mechanisms for ultrasonic fatigue across different fatigue regimes are investigated. Finally, because CMCs are utilized in extreme environments, oxidation plays an important role in their degradation. A multiphysics modeling methodology is thus developed to address the complex coupling between oxidation, mechanical stress, and oxygen diffusion in heterogeneous carbon fiber-reinforced CMC microstructures.
ContributorsSchichtel, Jacob (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Ghoshal, Anindya (Committee member) / Huang, Huei-Ping (Committee member) / Jiao, Yang (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2022
168428-Thumbnail Image.png
Description
Over the past few decades there has been significant interest in the design and construction of hypersonic vehicles. Such vehicles exhibit strongly coupled aerodynamics, acoustics, heat transfer, and structural deformations, which can take significant computational efforts to simulate using standard finite element and computational fluid dynamics techniques. This situation has

Over the past few decades there has been significant interest in the design and construction of hypersonic vehicles. Such vehicles exhibit strongly coupled aerodynamics, acoustics, heat transfer, and structural deformations, which can take significant computational efforts to simulate using standard finite element and computational fluid dynamics techniques. This situation has lead to development of various reduced order modelling (ROM) methods which reduce the parameter space of these simulations so they can be run more quickly. The planned hypersonic vehicles will be constructed by assembling a series of sub-structures, such as panels and stiffeners, that will be welded together creating built-up structures.In this light, the focus of the present investigation is on the formulation and validation of nonlinear reduced order models (NLROMs) of built-up structures that include nonlinear geometric effects induced by the large loads/large response. Moreover, it is recognized that gaps between sub-structures could result from the these intense loadings can thus the inclusion of the nonlinearity introduced by contact separation will also be addressed. These efforts, application to built-up structures and inclusion of contact nonlinearity, represent novel developments of existing NLROM strategies. A hat stiffened panel is selected as a representative example of built-up structure and a compact NRLOM is successfully constructed for this structure which exhibited a potential internal resonance. For the investigation of contact nonlinearity, two structural models were used: a cantilevered beam which can contact several stops and an overlapping plate model which can exhibit the opening/closing of a gap. Successful NLROMs were constructed for these structures with the basis for the plate model determined as a two-step process, i.e., considering the plate without gap first and then enriching the corresponding basis to account for opening of the gap. Adaptions were then successfully made to a Newton-Raphson solver to properly account for contact and the associated forces in static predictions by NLROMs.
ContributorsWainwright, Bret Aaron (Author) / Mignolet, Marc P (Thesis advisor) / Oswald, Jay (Committee member) / Peralta, Pedro (Committee member) / Spottswood, Stephen (Committee member) / Rajan, Subramaniam (Committee member) / Arizona State University (Publisher)
Created2021
168311-Thumbnail Image.png
Description
The increasing demand for structural materials with superior mechanical properties has provided a strong impetus to the discovery of novel materials, and innovations in processing techniques to improve the properties of existing materials. Methods like severe plastic deformation (SPD) and surface mechanical attrition treatment (SMAT) have led to significant enhancement

The increasing demand for structural materials with superior mechanical properties has provided a strong impetus to the discovery of novel materials, and innovations in processing techniques to improve the properties of existing materials. Methods like severe plastic deformation (SPD) and surface mechanical attrition treatment (SMAT) have led to significant enhancement in the strength of traditional structural materials like Al and Fe based alloys via microstructural refinement. However, the nanocrystalline materials produced using these techniques exhibit poor ductility due to the lack of effective strain hardening mechanisms, and as a result the well-known strength-ductility trade-off persists. To overcome this trade-off, researchers have proposed the concept of heterostructured materials, which are composed of domains ranging in size from a few nanometers to several micrometers. Over the last two decades, there has been intense research on the development of new methods to synthesize heterostructured materials. However, none of these methods is capable of providing precise control over key microstructural parameters such as average grain size, grain morphology, and volume fraction and connectivity of coarse and fine grains. Due to the lack of microstructural control, the relationship between these parameters and the deformation behavior of heterostructured materials cannot be investigated systematically, and hence designing heterostructured materials with optimized properties is currently infeasible. This work aims to address this scientific and technological challenge and is composed of two distinct but interrelated parts. The first part concerns the development of a broadly applicable synthesis method to produce heterostructured metallic films with precisely defined architectures. This method exploits two forms of film growth (epitaxial and Volmer-Weber) to generate heterostructured metallic films. The second part investigates the effect of different microstructural parameters on the deformation behavior of heterostructured metallic films with the aim of elucidating their structure-property relationships. Towards this end, freestanding heterostructured Fe films with different architectures were fabricated and uniaxially deformed using MEMS stages. The results from these experiments are presented and their implications for the mechanical properties of heterostructured materials is discussed.
ContributorsBerlia, Rohit (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Sieradzki, Karl (Committee member) / Peralta, Pedro (Committee member) / Crozier, Peter (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2021