Matching Items (21)
Filtering by

Clear all filters

Description
Microfluidics is the study of fluid flow at very small scales (micro -- one millionth of a meter) and is prevalent in many areas of science and engineering. Typical applications include lab-on-a-chip devices, microfluidic fuel cells, and DNA separation technologies. Many of these microfluidic devices rely on micron-resolution velocimetry measurements

Microfluidics is the study of fluid flow at very small scales (micro -- one millionth of a meter) and is prevalent in many areas of science and engineering. Typical applications include lab-on-a-chip devices, microfluidic fuel cells, and DNA separation technologies. Many of these microfluidic devices rely on micron-resolution velocimetry measurements to improve microchannel design and characterize existing devices. Methods such as micro particle imaging velocimetry (microPIV) and micro particle tracking velocimetry (microPTV) are mature and established methods for characterization of steady 2D flow fields. Increasingly complex microdevices require techniques that measure unsteady and/or three dimensional velocity fields. This dissertation presents a method for three-dimensional velocimetry of unsteady microflows based on spinning disk confocal microscopy and depth scanning of a microvolume. High-speed 2D unsteady velocity fields are resolved by acquiring images of particle motion using a high-speed CMOS camera and confocal microscope. The confocal microscope spatially filters out of focus light using a rotating disk of pinholes placed in the imaging path, improving the ability of the system to resolve unsteady microPIV measurements by improving the image and correlation signal to noise ratio. For 3D3C measurements, a piezo-actuated objective positioner quickly scans the depth of the microvolume and collects 2D image slices, which are stacked into 3D images. Super resolution microPIV interrogates these 3D images using microPIV as a predictor field for tracking individual particles with microPTV. The 3D3C diagnostic is demonstrated by measuring a pressure driven flow in a three-dimensional expanding microchannel. The experimental velocimetry data acquired at 30 Hz with instantaneous spatial resolution of 4.5 by 4.5 by 4.5 microns agrees well with a computational model of the flow field. The technique allows for isosurface visualization of time resolved 3D3C particle motion and high spatial resolution velocity measurements without requiring a calibration step or reconstruction algorithms. Several applications are investigated, including 3D quantitative fluorescence imaging of isotachophoresis plugs advecting through a microchannel and the dynamics of reaction induced colloidal crystal deposition.
ContributorsKlein, Steven Adam (Author) / Posner, Jonathan D (Thesis advisor) / Adrian, Ronald (Committee member) / Chen, Kangping (Committee member) / Devasenathipathy, Shankar (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2011
150045-Thumbnail Image.png
Description
A relatively simple subset of nanotechnology - nanofluids - can be obtained by adding nanoparticles to conventional base fluids. The promise of these fluids stems from the fact that relatively low particle loadings (typically <1% volume fractions) can significantly change the properties of the base fluid. This research

A relatively simple subset of nanotechnology - nanofluids - can be obtained by adding nanoparticles to conventional base fluids. The promise of these fluids stems from the fact that relatively low particle loadings (typically <1% volume fractions) can significantly change the properties of the base fluid. This research explores how low volume fraction nanofluids, composed of common base-fluids, interact with light energy. Comparative experimentation and modeling reveals that absorbing light volumetrically (i.e. in the depth of the fluid) is fundamentally different from surface-based absorption. Depending on the particle material, size, shape, and volume fraction, a fluid can be changed from being mostly transparent to sunlight (in the case of water, alcohols, oils, and glycols) to being a very efficient volumetric absorber of sunlight. This research also visualizes, under high levels of irradiation, how nanofluids undergo interesting, localized phase change phenomena. For this, images were taken of bubble formation and boiling in aqueous nanofluids heated by a hot wire and by a laser. Infrared thermography was also used to quantify this phenomenon. Overall, though, this research reveals the possibility for novel solar collectors in which the working fluid directly absorbs light energy and undergoes phase change in a single step. Modeling results indicate that these improvements can increase a solar thermal receiver's efficiency by up to 10%.
ContributorsTaylor, Robert (Author) / Phelan, Patrick E (Thesis advisor) / Adrian, Ronald (Committee member) / Trimble, Steve (Committee member) / Posner, Jonathan (Committee member) / Maracas, George (Committee member) / Arizona State University (Publisher)
Created2011
149676-Thumbnail Image.png
Description
Locomotion of microorganisms is commonly observed in nature. Although microorganism locomotion is commonly attributed to mechanical deformation of solid appendages, in 1956 Nobel Laureate Peter Mitchell proposed that an asymmetric ion flux on a bacterium's surface could generate electric fields that drive locomotion via self-electrophoresis. Recent advances in nanofabrication have

Locomotion of microorganisms is commonly observed in nature. Although microorganism locomotion is commonly attributed to mechanical deformation of solid appendages, in 1956 Nobel Laureate Peter Mitchell proposed that an asymmetric ion flux on a bacterium's surface could generate electric fields that drive locomotion via self-electrophoresis. Recent advances in nanofabrication have enabled the engineering of synthetic analogues, bimetallic colloidal particles, that swim due to asymmetric ion flux originally proposed by Mitchell. Bimetallic colloidal particles swim through aqueous solutions by converting chemical fuel to fluid motion through asymmetric electrochemical reactions. This dissertation presents novel bimetallic motor fabrication strategies, motor functionality, and a study of the motor collective behavior in chemical concentration gradients. Brownian dynamics simulations and experiments show that the motors exhibit chemokinesis, a motile response to chemical gradients that results in net migration and concentration of particles. Chemokinesis is typically observed in living organisms and distinct from chemotaxis in that there is no particle directional sensing. The synthetic motor chemokinesis observed in this work is due to variation in the motor's velocity and effective diffusivity as a function of the fuel and salt concentration. Static concentration fields are generated in microfluidic devices fabricated with porous walls. The development of nanoscale particles that swim autonomously and collectively in chemical concentration gradients can be leveraged for a wide range of applications such as directed drug delivery, self-healing materials, and environmental remediation.
ContributorsWheat, Philip Matthew (Author) / Posner, Jonathan D (Thesis advisor) / Phelan, Patrick (Committee member) / Chen, Kangping (Committee member) / Buttry, Daniel (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2011
149785-Thumbnail Image.png
Description
Microchannel heat sinks can possess heat transfer characteristics unavailable in conventional heat exchangers; such sinks offer compact solutions to otherwise intractable thermal management problems, notably in small-scale electronics cooling. Flow boiling in microchannels allows a very high heat transfer rate, but is bounded by the critical heat flux (CHF). This

Microchannel heat sinks can possess heat transfer characteristics unavailable in conventional heat exchangers; such sinks offer compact solutions to otherwise intractable thermal management problems, notably in small-scale electronics cooling. Flow boiling in microchannels allows a very high heat transfer rate, but is bounded by the critical heat flux (CHF). This thesis presents a theoretical-numerical study of a method to improve the heat rejection capability of a microchannel heat sink via expansion of the channel cross-section along the flow direction. The thermodynamic quality of the refrigerant increases during flow boiling, decreasing the density of the bulk coolant as it flows. This may effect pressure fluctuations in the channels, leading to nonuniform heat transfer and local dryout in regions exceeding CHF. This undesirable phenomenon is counteracted by permitting the cross-section of the microchannel to increase along the direction of flow, allowing more volume for the vapor. Governing equations are derived from a control-volume analysis of a single heated rectangular microchannel; the cross-section is allowed to expand in width and height. The resulting differential equations are solved numerically for a variety of channel expansion profiles and numbers of channels. The refrigerant is R-134a and channel parameters are based on a physical test bed in a related experiment. Significant improvement in CHF is possible with moderate area expansion. Minimal additional manufacturing costs could yield major gains in the utility of microchannel heat sinks. An optimum expansion rate occurred in certain cases, and alterations in the channel width are, in general, more effective at improving CHF than alterations in the channel height. Modest expansion in height enables small width expansions to be very effective.
ContributorsMiner, Mark (Author) / Phelan, Patrick E (Thesis advisor) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2011
149829-Thumbnail Image.png
Description
Mostly, manufacturing tolerance charts are used these days for manufacturing tolerance transfer but these have the limitation of being one dimensional only. Some research has been undertaken for the three dimensional geometric tolerances but it is too theoretical and yet to be ready for operator level usage. In this research,

Mostly, manufacturing tolerance charts are used these days for manufacturing tolerance transfer but these have the limitation of being one dimensional only. Some research has been undertaken for the three dimensional geometric tolerances but it is too theoretical and yet to be ready for operator level usage. In this research, a new three dimensional model for tolerance transfer in manufacturing process planning is presented that is user friendly in the sense that it is built upon the Coordinate Measuring Machine (CMM) readings that are readily available in any decent manufacturing facility. This model can take care of datum reference change between non orthogonal datums (squeezed datums), non-linearly oriented datums (twisted datums) etc. Graph theoretic approach based upon ACIS, C++ and MFC is laid out to facilitate its implementation for automation of the model. A totally new approach to determining dimensions and tolerances for the manufacturing process plan is also presented. Secondly, a new statistical model for the statistical tolerance analysis based upon joint probability distribution of the trivariate normal distributed variables is presented. 4-D probability Maps have been developed in which the probability value of a point in space is represented by the size of the marker and the associated color. Points inside the part map represent the pass percentage for parts manufactured. The effect of refinement with form and orientation tolerance is highlighted by calculating the change in pass percentage with the pass percentage for size tolerance only. Delaunay triangulation and ray tracing algorithms have been used to automate the process of identifying the points inside and outside the part map. Proof of concept software has been implemented to demonstrate this model and to determine pass percentages for various cases. The model is further extended to assemblies by employing convolution algorithms on two trivariate statistical distributions to arrive at the statistical distribution of the assembly. Map generated by using Minkowski Sum techniques on the individual part maps is superimposed on the probability point cloud resulting from convolution. Delaunay triangulation and ray tracing algorithms are employed to determine the assembleability percentages for the assembly.
ContributorsKhan, M Nadeem Shafi (Author) / Phelan, Patrick E (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Farin, Gerald (Committee member) / Roberts, Chell (Committee member) / Henderson, Mark (Committee member) / Arizona State University (Publisher)
Created2011
149654-Thumbnail Image.png
Description
Thermoelectric devices (TED's) continue to be an area of high interest in both thermal management and energy harvesting applications. Due to their compact size, reliable performance, and their ability to accomplish sub-ambient cooling, much effort is being focused on optimized methods for characterization and integration of TED's for future applications.

Thermoelectric devices (TED's) continue to be an area of high interest in both thermal management and energy harvesting applications. Due to their compact size, reliable performance, and their ability to accomplish sub-ambient cooling, much effort is being focused on optimized methods for characterization and integration of TED's for future applications. Predictive modeling methods can only achieve accurate results with robust input physical parameters, therefore TED characterization methods are critical for future development of the field. Often times, physical properties of TED sub-components are very well known, however the "effective" properties of a TED module can be difficult to measure with certainty. The module-level properties must be included in predictive modeling, since these include electrical and thermal contact resistances which are difficult to analytically derive. A unique characterization method is proposed, which offers the ability to directly measure all device-level physical parameters required for accurate modeling. Among many other unique features, the metrology allows the capability to perform an independent validation of empirical parameters by measuring parasitic heat losses. As support for the accuracy of the measured parameters, the metrology output from an off-the-shelf TED is used in a system-level thermal model to predict and validate observed metrology temperatures. Finally, as an extension to the benefits of this metrology, it is shown that resulting data can be used to empirically validate a device-level dimensionless relationship. The output provides a powerful performance prediction tool, since all physical behavior in a performance domain is captured using a single analytical relationship and can be plotted on a singe graph.
ContributorsLofgreen, Kelly (Author) / Phelan, Patrick E (Thesis advisor) / Posner, Jonathan (Committee member) / Devasenathipathy, Shankar (Committee member) / Arizona State University (Publisher)
Created2011
150310-Thumbnail Image.png
Description
The world is grappling with two serious issues related to energy and climate change. The use of solar energy is receiving much attention due to its potential as one of the solutions. Air conditioning is particularly attractive as a solar energy application because of the near coincidence of peak cooling

The world is grappling with two serious issues related to energy and climate change. The use of solar energy is receiving much attention due to its potential as one of the solutions. Air conditioning is particularly attractive as a solar energy application because of the near coincidence of peak cooling loads with the available solar power. Recently, researchers have started serious discussions of using adsorptive processes for refrigeration and heat pumps. There is some success for the >100 ton adsorption systems but none exists in the <10 ton size range required for residential air conditioning. There are myriad reasons for the lack of small-scale systems such as low Coefficient of Performance (COP), high capital cost, scalability, and limited performance data. A numerical model to simulate an adsorption system was developed and its performance was compared with similar thermal-powered systems. Results showed that both the adsorption and absorption systems provide equal cooling capacity for a driving temperature range of 70-120 ºC, but the adsorption system is the only system to deliver cooling at temperatures below 65 ºC. Additionally, the absorption and desiccant systems provide better COP at low temperatures, but the COP's of the three systems converge at higher regeneration temperatures. To further investigate the viability of solar-powered heat pump systems, an hourly building load simulation was developed for a single-family house in the Phoenix metropolitan area. Thermal as well as economic performance comparison was conducted for adsorption, absorption, and solar photovoltaic (PV) powered vapor compression systems for a range of solar collector area and storage capacity. The results showed that for a small collector area, solar PV is more cost-effective whereas adsorption is better than absorption for larger collector area. The optimum solar collector area and the storage size were determined for each type of solar system. As part of this dissertation work, a small-scale proof-of-concept prototype of the adsorption system was assembled using some novel heat transfer enhancement strategies. Activated carbon and butane was chosen as the adsorbent-refrigerant pair. It was found that a COP of 0.12 and a cooling capacity of 89.6 W can be achieved.
ContributorsGupta, Yeshpal (Author) / Phelan, Patrick E (Thesis advisor) / Bryan, Harvey J. (Committee member) / Mikellidas, Pavlos G (Committee member) / Pacheco, Jose R (Committee member) / Trimble, Steven W (Committee member) / Arizona State University (Publisher)
Created2011
151528-Thumbnail Image.png
Description
The heat transfer enhancements available from expanding the cross-section of a boiling microchannel are explored analytically and experimentally. Evaluation of the literature on critical heat flux in flow boiling and associated pressure drop behavior is presented with predictive critical heat flux (CHF) and pressure drop correlations. An optimum channel configuration

The heat transfer enhancements available from expanding the cross-section of a boiling microchannel are explored analytically and experimentally. Evaluation of the literature on critical heat flux in flow boiling and associated pressure drop behavior is presented with predictive critical heat flux (CHF) and pressure drop correlations. An optimum channel configuration allowing maximum CHF while reducing pressure drop is sought. A perturbation of the channel diameter is employed to examine CHF and pressure drop relationships from the literature with the aim of identifying those adequately general and suitable for use in a scenario with an expanding channel. Several CHF criteria are identified which predict an optimizable channel expansion, though many do not. Pressure drop relationships admit improvement with expansion, and no optimum presents itself. The relevant physical phenomena surrounding flow boiling pressure drop are considered, and a balance of dimensionless numbers is presented that may be of qualitative use. The design, fabrication, inspection, and experimental evaluation of four copper microchannel arrays of different channel expansion rates with R-134a refrigerant is presented. Optimum rates of expansion which maximize the critical heat flux are considered at multiple flow rates, and experimental results are presented demonstrating optima. The effect of expansion on the boiling number is considered, and experiments demonstrate that expansion produces a notable increase in the boiling number in the region explored, though no optima are observed. Significant decrease in the pressure drop across the evaporator is observed with the expanding channels, and no optima appear. Discussion of the significance of this finding is presented, along with possible avenues for future work.
ContributorsMiner, Mark (Author) / Phelan, Patrick E (Thesis advisor) / Baer, Steven (Committee member) / Chamberlin, Ralph (Committee member) / Chen, Kangping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
152074-Thumbnail Image.png
Description
Locomotion of microorganisms is commonly observed in nature and some aspects of their motion can be replicated by synthetic motors. Synthetic motors rely on a variety of propulsion mechanisms including auto-diffusiophoresis, auto-electrophoresis, and bubble generation. Regardless of the source of the locomotion, the motion of any motor can be characterized

Locomotion of microorganisms is commonly observed in nature and some aspects of their motion can be replicated by synthetic motors. Synthetic motors rely on a variety of propulsion mechanisms including auto-diffusiophoresis, auto-electrophoresis, and bubble generation. Regardless of the source of the locomotion, the motion of any motor can be characterized by the translational and rotational velocity and effective diffusivity. In a uniform environment the long-time motion of a motor can be fully characterized by the effective diffusivity. In this work it is shown that when motors possess both translational and rotational velocity the motor transitions from a short-time diffusivity to a long-time diffusivity at a time of pi/w. The short-time diffusivities are two to three orders of magnitude larger than the diffusivity of a Brownian sphere of the same size, increase linearly with concentration, and scale as v^2/2w. The measured long-time diffusivities are five times lower than the short-time diffusivities, scale as v^2/{2Dr [1 + (w/Dr )^2]}, and exhibit a maximum as a function of concentration. The variation of a colloid's velocity and effective diffusivity to its local environment (e.g. fuel concentration) suggests that the motors can accumulate in a bounded system, analogous to biological chemokinesis. Chemokinesis of organisms is the non-uniform equilibrium concentration that arises from a bounded random walk of swimming organisms in a chemical concentration gradient. In non-swimming organisms we term this response diffusiokinesis. We show that particles that migrate only by Brownian thermal motion are capable of achieving non-uniform pseudo equilibrium distribution in a diffusivity gradient. The concentration is a result of a bounded random-walk process where at any given time a larger percentage of particles can be found in the regions of low diffusivity than in regions of high diffusivity. Individual particles are not trapped in any given region but at equilibrium the net flux between regions is zero. For Brownian particles the gradient in diffusivity is achieved by creating a viscosity gradient in a microfluidic device. The distribution of the particles is described by the Fokker-Planck equation for variable diffusivity. The strength of the probe concentration gradient is proportional to the strength of the diffusivity gradient and inversely proportional to the mean probe diffusivity in the channel in accordance with the no flux condition at steady state. This suggests that Brownian colloids, natural or synthetic, will concentrate in a bounded system in response to a gradient in diffusivity and that the magnitude of the response is proportional to the magnitude of the gradient in diffusivity divided by the mean diffusivity in the channel.
ContributorsMarine, Nathan Arasmus (Author) / Posner, Jonathan D (Thesis advisor) / Adrian, Ronald J (Committee member) / Frakes, David (Committee member) / Phelan, Patrick E (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
152076-Thumbnail Image.png
Description
Human fingertips contain thousands of specialized mechanoreceptors that enable effortless physical interactions with the environment. Haptic perception capabilities enable grasp and manipulation in the absence of visual feedback, as when reaching into one's pocket or wrapping a belt around oneself. Unfortunately, state-of-the-art artificial tactile sensors and processing algorithms are no

Human fingertips contain thousands of specialized mechanoreceptors that enable effortless physical interactions with the environment. Haptic perception capabilities enable grasp and manipulation in the absence of visual feedback, as when reaching into one's pocket or wrapping a belt around oneself. Unfortunately, state-of-the-art artificial tactile sensors and processing algorithms are no match for their biological counterparts. Tactile sensors must not only meet stringent practical specifications for everyday use, but their signals must be processed and interpreted within hundreds of milliseconds. Control of artificial manipulators, ranging from prosthetic hands to bomb defusal robots, requires a constant reliance on visual feedback that is not entirely practical. To address this, we conducted three studies aimed at advancing artificial haptic intelligence. First, we developed a novel, robust, microfluidic tactile sensor skin capable of measuring normal forces on flat or curved surfaces, such as a fingertip. The sensor consists of microchannels in an elastomer filled with a liquid metal alloy. The fluid serves as both electrical interconnects and tunable capacitive sensing units, and enables functionality despite substantial deformation. The second study investigated the use of a commercially-available, multimodal tactile sensor (BioTac sensor, SynTouch) to characterize edge orientation with respect to a body fixed reference frame, such as a fingertip. Trained on data from a robot testbed, a support vector regression model was developed to relate haptic exploration actions to perception of edge orientation. The model performed comparably to humans for estimating edge orientation. Finally, the robot testbed was used to perceive small, finger-sized geometric features. The efficiency and accuracy of different haptic exploratory procedures and supervised learning models were assessed for estimating feature properties such as type (bump, pit), order of curvature (flat, conical, spherical), and size. This study highlights the importance of tactile sensing in situations where other modalities fail, such as when the finger itself blocks line of sight. Insights from this work could be used to advance tactile sensor technology and haptic intelligence for artificial manipulators that improve quality of life, such as prosthetic hands and wheelchair-mounted robotic hands.
ContributorsPonce Wong, Ruben Dario (Author) / Santos, Veronica J (Thesis advisor) / Artemiadis, Panagiotis K (Committee member) / Helms Tillery, Stephen I (Committee member) / Posner, Jonathan D (Committee member) / Runger, George C. (Committee member) / Arizona State University (Publisher)
Created2013