Matching Items (5)
152255-Thumbnail Image.png
Description
Many manmade chemicals used in consumer products are ultimately washed down the drain and are collected in municipal sewers. Efficient chemical monitoring at wastewater treatment (WWT) plants thus may provide up-to-date information on chemical usage rates for epidemiological assessments. The objective of the present study was to extrapolate this concept,

Many manmade chemicals used in consumer products are ultimately washed down the drain and are collected in municipal sewers. Efficient chemical monitoring at wastewater treatment (WWT) plants thus may provide up-to-date information on chemical usage rates for epidemiological assessments. The objective of the present study was to extrapolate this concept, termed 'sewage epidemiology', to include municipal sewage sludge (MSS) in identifying and prioritizing contaminants of emerging concern (CECs). To test this the following specific aims were defined: i) to screen and identify CECs in nationally representative samples of MSS and to provide nationwide inventories of CECs in U.S. MSS; ii) to investigate the fate and persistence in MSS-amended soils, of sludge-borne hydrophobic CECs; and iii) to develop an analytical tool relying on contaminant levels in MSS as an indicator for identifying and prioritizing hydrophobic CECs. Chemicals that are primarily discharged to the sewage systems (alkylphenol surfactants) and widespread persistent organohalogen pollutants (perfluorochemicals and brominated flame retardants) were analyzed in nationally representative MSS samples. A meta-analysis showed that CECs contribute about 0.04-0.15% to the total dry mass of MSS, a mass equivalent of 2,700-7,900 metric tonnes of chemicals annually. An analysis of archived mesocoms from a sludge weathering study showed that 64 CECs persisted in MSS/soil mixtures over the course of the experiment, with half-lives ranging between 224 and >990 days; these results suggest an inherent persistence of CECs that accumulate in MSS. A comparison of the spectrum of chemicals (n=52) analyzed in nationally representative biological specimens from humans and MSS revealed 70% overlap. This observed co-occurrence of contaminants in both matrices suggests that MSS may serve as an indicator for ongoing human exposures and body burdens of pollutants in humans. In conclusion, I posit that this novel approach in sewage epidemiology may serve to pre-screen and prioritize the several thousands of known or suspected CECs to identify those that are most prone to pose a risk to human health and the environment.
ContributorsVenkatesan, Arjunkrishna (Author) / Halden, Rolf U. (Thesis advisor) / Westerhoff, Paul (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2013
154032-Thumbnail Image.png
Description
This dissertation studies the larger issue of antibiotic resistance with respect to how antibiotics are being introduced into the environment, focusing on two major anthropogenic pathways: animal husbandry for human consumption, and the recycling of wastewater and municipal sludge generated during conventional biological sewage treatment.

For animal production on land

This dissertation studies the larger issue of antibiotic resistance with respect to how antibiotics are being introduced into the environment, focusing on two major anthropogenic pathways: animal husbandry for human consumption, and the recycling of wastewater and municipal sludge generated during conventional biological sewage treatment.

For animal production on land (agriculture) antibiotics are often used for growth enhancement and increased feed efficiency. For animal production in water (aquaculture) antibiotics are often used as a prophylactic. I found that the same antibiotics are being used in both industries and that the same strains of human pathogens have also been isolated from both sources, expressing identical resistance mechanisms. In U.S. seafood, five out of 47 antibiotics screened for were detected at levels of 0.3 to 7.7 ng/g fresh weight. Although compliant with FDA regulations, the risk for resistance still exists, as even low antibiotic concentrations have been shown to exert selective pressure on bacteria.

Similarly low concentrations of antibiotics were found in U.S. biosolids at levels of 0.6 to 19.1 ng/g dry weight. Of the five antibiotics detected, two have never been reported before in biosolids. Three have never been reported before in U.S. biosolids. Using the raw numbers obtained from antibiotic screenings in biosolids, I assessed the impact of employing four different LC-MS/MS methods, concluding that analysts should experimentally determine the most appropriate quantitation method based on the analyte targeted, matrix investigated, and research goals pursued. Preferred quantitation approaches included the isotope dilution method with use of an analogous standard and, although time and resource demanding, the method of standard addition.

In conclusion, antibiotics introduced into the environment via agriculture, aquaculture, and wastewater recycling pose a combination of chemical and biological threats. Aside from exerting outright chemical toxicity to non-target organisms, antibiotic residues can promote the development of multi-drug resistance in human pathogens. Public health protection approaches to stem the risks posed by animal husbandry may include reserving drugs for exclusive, human use, decreasing their usage altogether, improving reporting efforts, reevaluating existing regulations on agricultural and aquacultural antibiotic usage, and improved risk assessment for biosolids application on land.
ContributorsDone, Hansa Yi-Yun (Author) / Halden, Rolf U. (Thesis advisor) / Haydel, Shelley E (Committee member) / Abbaszadegan, Morteza (Committee member) / Arizona State University (Publisher)
Created2015
158583-Thumbnail Image.png
Description

Phosphorus (P) is a limiting nutrient in ecosystems and is mainly used as fertilizer to grow food. The demand for P is increasing due to the need for increased food supply to support a growing population. However, P is obtained from phosphate rock, a finite resource that takes millions of

Phosphorus (P) is a limiting nutrient in ecosystems and is mainly used as fertilizer to grow food. The demand for P is increasing due to the need for increased food supply to support a growing population. However, P is obtained from phosphate rock, a finite resource that takes millions of years to form. These phosphate rock deposits are found in only a few countries. This uneven distribution of phosphate rock leads to a potential imbalance in socio-economic systems, generating food security pressure due to unaffordability of P fertilizer. Thus, the first P-sustainability concern is a stable supply of affordable P fertilizer for agriculture. In addition, improper management of P from field to fork leaves an open end in the global P cycle that results in widespread water pollution. This eutrophication leads to toxic algal blooms and hypoxic “dead zones”. Thus, the second P-sustainability concern involves P pollution from agriculture and cities. This thesis focuses on P flows in a city (Macau as a case study) and on potential strategies for improvements of sustainable P management in city and agriculture. Chapter 2 showed a P-substance-flow analysis for Macau from 1998-2016. Macau is a city with a unique economy build on tourism. The major P flows into Macau were from food, detergent, and sand (for land reclamation). P recovery from wastewater treatment could enhance Macau’s overall P sustainability if the recovered P could be directed towards replacing mined P used to produce food. Chapters 3 and 4 tested a combination of P sustainability management tactics including recycling P from cities and enhancing P-use efficiency (PUE) in agriculture. Algae and biosolids were used as recycled-P fertilizers, and genetically transformed lettuce was used as the a PUE-enhanced crop. This P sustainable system was compared to the conventional agricultural system using commercial fertilizer and the wild type lettuce. Chapters 3 and 4 showed that trying to combine a PUE-enhancement strategy with P recycling did not work well, although organic fertilizers like algae and biosolids may be more beneficial as part of longer-term agricultural practices. This would be a good area for future research.

ContributorsChan, Neng Iong (Author) / Elser, James J (Thesis advisor) / Rittmann, Bruce E. (Thesis advisor) / Grimm, Nancy (Committee member) / Hall, Sharon J (Committee member) / Arizona State University (Publisher)
Created2020
131157-Thumbnail Image.png
Description
Following the journey through the sewerage system, wastewater is subject to a series of purification procedures, prior to water reuse and disposal of the resultant sewage sludge. Biosolids, also known as treated sewage sludge, deemed fit for application on land, is a nutrient-rich, semisolid byproduct of biological wastewater treatment.

Following the journey through the sewerage system, wastewater is subject to a series of purification procedures, prior to water reuse and disposal of the resultant sewage sludge. Biosolids, also known as treated sewage sludge, deemed fit for application on land, is a nutrient-rich, semisolid byproduct of biological wastewater treatment. Technological progression in metagenomics has allowed for large-scale analysis of complex viral communities in a number of samples, including wastewater. Members of the Microviridae family are non-enveloped, ssDNA bacteriophages, and are known to infect enterobacteria. Members of the Genomoviridae family similarly are non-enveloped, ssDNA viruses, but are presumed to infect fungi rather than eubacteria. As these two families of viruses are not relatively documented and their diversity poorly classified, this study aimed to analyze the presence of genomoviruses and the diversity of microviruses in nine samples representative of wastewater in Arizona and other regions of the United States. Using a metagenomic approach, the nucleic acids of genomoviruses and microviruses were isolated, assembled into complete genomes, and characterized through visual analysis: a heat chart showing percent coverage for genomoviruses and a circular phylogenetic tree showing diversity of microviruses. The heat map results for the genomoviruses showed a large presence of 99 novel sequences in all nine wastewater samples. Additionally, the 535 novel microviruses displayed great diversity in the cladogram, both in terms of sub-family and isolation source. Further research should be conducted in order to classify the taxonomy of microviruses and the diversity of genomoviruses. Finally, this study suggests future exploration of the viral host, prior to entering the wastewater system.
ContributorsSchreck, Joshua Reuben (Author) / Varsani, Arvind (Thesis director) / Rolf, Halden (Committee member) / Misra, Rajeev (Committee member) / School of Film, Dance and Theatre (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
165168-Thumbnail Image.png
Description
Water is a scarce resource that is recycled through wastewater treatment plants (WWTPs) to help fulfill the demand for water. Agriculture is a large consumer of water, indicating that WWTP-treated water is proportionally applied to crops at a high rate. Recycled water is highly regulated but is capable of containing

Water is a scarce resource that is recycled through wastewater treatment plants (WWTPs) to help fulfill the demand for water. Agriculture is a large consumer of water, indicating that WWTP-treated water is proportionally applied to crops at a high rate. Recycled water is highly regulated but is capable of containing high-risk pathogens and contaminants despite the efforts of physical and microbial treatments throughout the WWTP process. WWTPs are also producers of biosolids, treated sewage sludge regulated by the EPA that can be applied in agricultural settings to act as a fertilizer. Biosolids are a useful fertilizer as they are rich in nitrogen and contain many beneficial nutrients for soil and crops. Due to biosolids being a by-product of recycled water, they are susceptible to containing the same pathogens and contaminants that can be transferred in the WWTP systems. Antibiotic resistance (AR) is an ever-growing threat on a global scale and is one of the areas of concern for consideration of pathogen spread from WWTPs. Antibiotic resistance bacteria, created through mutation of bacterial plasmids producing antibiotic resistance genes (ARGs), have been quantified and studied to help mitigate the risk posed by continued AR spread in the environment. This study aims to produce a comprehensive collection of quantified ARG concentration data in biosolids, as well as producing a QMRA model integrating Monte Carlo distributions to provide groundwork for understanding of the direct dosage and consumption of ARGs to the standard U.S. citizen. The study determined that sul1, sul2, tetM, and tetO are ARGs of high concern in biosolid samples based on current concentration data of biosolid samples. The resulting dose models and gene concentration distributions provide data to support the need to mitigate AR risk presented by agricultural biosolid application.
ContributorsMorgan, Grace (Author) / Hamilton, Kerry (Thesis director) / Muenich, Rebecca (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05