Matching Items (9)
Filtering by

Clear all filters

154421-Thumbnail Image.png
Description
One of the fundamental questions in molecular biology is how genes and the control of their expression give rise to so many diverse phenotypes in nature. The mRNA molecule plays a key role in this process as it directs the spatial and temporal expression of genetic information contained in the

One of the fundamental questions in molecular biology is how genes and the control of their expression give rise to so many diverse phenotypes in nature. The mRNA molecule plays a key role in this process as it directs the spatial and temporal expression of genetic information contained in the DNA molecule to precisely instruct biological processes in living organisms. The region located between the STOP codon and the poly(A)-tail of the mature mRNA, known as the 3′Untranslated Region (3′UTR), is a key modulator of these activities. It contains numerous sequence elements that are targeted by trans-acting factors that dose gene expression, including the repressive small non-coding RNAs, called microRNAs.

Recent transcriptome data from yeast, worm, plants, and humans has shown that alternative polyadenylation (APA), a mechanism that enables expression of multiple 3′UTR isoforms for the same gene, is widespread in eukaryotic organisms. It is still poorly understood why metazoans require multiple 3′UTRs for the same gene, but accumulating evidence suggests that APA is largely regulated at a tissue-specific level. APA may direct combinatorial variation between cis-elements and microRNAs, perhaps to regulate gene expression in a tissue-specific manner. Apart from a few single gene anecdotes, this idea has not been systematically explored.

This dissertation research employs a systems biology approach to study the somatic tissue dynamics of APA and its impact on microRNA targeting networks in the small nematode C. elegans. In the first aim, tools were developed and applied to isolate and sequence mRNA from worm intestine and muscle tissues, which revealed pervasive tissue-specific APA correlated with microRNA regulation. The second aim provides genetic evidence that two worm genes use APA to escape repression by microRNAs in the body muscle. Finally, in aim three, mRNA from five additional somatic worm tissues was sequenced and their 3′ends mapped, allowing for an integrative study of APA and microRNA targeting dynamics in worms. Together, this work provides evidence that APA is a pervasive mechanism operating in somatic tissues of C. elegans with the potential to significantly rearrange their microRNA regulatory networks and precisely dose their gene expression.
ContributorsBlazie, Stephen M (Author) / Mangone, Marco (Thesis advisor) / LaBaer, Josh (Committee member) / Lake, Doug (Committee member) / Newfeld, Stuart (Committee member) / Arizona State University (Publisher)
Created2016
154702-Thumbnail Image.png
Description
Despite the safe and effective use of attenuated vaccines for over fifty years, measles virus (MV) remains an insidious threat to global health. Problematically, infants less than one year of age, who are the most prone to severe infection and death by measles, cannot be immunized using current MV vaccines.

Despite the safe and effective use of attenuated vaccines for over fifty years, measles virus (MV) remains an insidious threat to global health. Problematically, infants less than one year of age, who are the most prone to severe infection and death by measles, cannot be immunized using current MV vaccines. For this dissertation, I generated and performed preclinical evaluation of two novel MV vaccine candidates. Based on data from clinical trials that showed increasing the dosage of current MV vaccines improved antibody responses in six-month-old recipients, I hypothesized that increasing the relevant antigenic stimulus of a standard titer dose would allow safe and effective immunization at a younger age. I generated two modified MVs with increased expression of the hemagglutinin (H) protein, the most important viral antigen for inducing protective neutralizing immunity, in the background of a current vaccine-equivalent. One virus, MVvac2-H2, expressed higher levels of full-length H, resulting in a three-fold increase in H incorporation into virions, while the second, MVvac2-Hsol, expressed and secreted truncated, soluble H protein to its extracellular environment. The alteration to the virion envelope of MVvac2-H2 conferred upon that virus a measurable resistance to in vitro neutralization. In initial screening in adult mouse models of vaccination, both modified MVs proved more immunogenic than their parental strain in outbred mice, while MVvac2-H2 additionally proved more immunogenic in the gold standard MV-susceptible mouse model. Remarkably, MVvac2-H2 better induced protective immunity in the presence of low levels of artificially introduced passive immunity that mimic the passive maternal immunity that currently limits vaccination of young infants, and that strongly inhibited responses to the current vaccine-equivalent. Finally, I developed a more physiological infant-like mouse model for MV vaccine testing, in which MV-susceptible dams vaccinated with the current vaccine-equivalent transfer passive immunity to their pups. This model will allow additional preclinical evaluation of the performance of MVvac2-H2 in pups of immune dams. Altogether, in this dissertation I identify a promising candidate, MVvac2-H2, for a next generation measles vaccine.
ContributorsJulik, Emily (Author) / Reyes del Valle, Jorge (Thesis advisor) / Chang, Yung (Committee member) / Blattman, Joseph (Committee member) / Hogue, Brenda (Committee member) / Nickerson, Cheryl (Committee member) / Arizona State University (Publisher)
Created2016
155035-Thumbnail Image.png
Description
A central task for historians and philosophers of science is to characterize and analyze the epistemic practices in a given science. The epistemic practice of a science includes its explanatory goals as well as the methods used to achieve these goals. This dissertation addresses the epistemic practices in gene expression

A central task for historians and philosophers of science is to characterize and analyze the epistemic practices in a given science. The epistemic practice of a science includes its explanatory goals as well as the methods used to achieve these goals. This dissertation addresses the epistemic practices in gene expression research spanning the mid-twentieth century to the twenty-first century. The critical evaluation of the standard historical narratives of the molecular life sciences clarifies certain philosophical problems with respect to reduction, emergence, and representation, and offers new ways with which to think about the development of scientific research and the nature of scientific change.

The first chapter revisits some of the key experiments that contributed to the development of the repression model of genetic regulation in the lac operon and concludes that the early research on gene expression and genetic regulation depict an iterative and integrative process, which was neither reductionist nor holist. In doing so, it challenges a common application of a conceptual framework in the history of biology and offers an alternative framework. The second chapter argues that the concept of emergence in the history and philosophy of biology is too ambiguous to account for the current research in post-genomic molecular biology and it is often erroneously used to argue against some reductionist theses. The third chapter investigates the use of network representations of gene expression in developmental evolution research and takes up some of the conceptual and methodological problems it has generated. The concluding comments present potential avenues for future research arising from each substantial chapter.

In sum, this dissertation argues that the epistemic practices of gene expression research are an iterative and integrative process, which produces theoretical representations of the complex interactions in gene expression as networks. Moreover, conceptualizing these interactions as networks constrains empirical research strategies by the limited number of ways in which gene expression can be controlled through general rules of network interactions. Making these strategies explicit helps to clarify how they can explain the dynamic and adaptive features of genomes.
ContributorsRacine, Valerie (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred D (Thesis advisor) / Creath, Richard (Committee member) / Newfeld, Stuart (Committee member) / Morange, Michel (Committee member) / Arizona State University (Publisher)
Created2016
156732-Thumbnail Image.png
Description
Necrotic enteritis (NE) is caused by type A strains of the bacterium Clostridium perfringens, leading to an estimated 2 billion dollar global economic loss in the poultry industry annually. Traditionally, NE has been effectively controlled by antibiotics added to the diet of poultry. Concerns about increasing antibiotic resistance of poultry

Necrotic enteritis (NE) is caused by type A strains of the bacterium Clostridium perfringens, leading to an estimated 2 billion dollar global economic loss in the poultry industry annually. Traditionally, NE has been effectively controlled by antibiotics added to the diet of poultry. Concerns about increasing antibiotic resistance of poultry and human based pathogens have led to the consideration of alternative approaches for controlling disease, such as vaccination. NE causing strains of C. perfringens produce two major toxins, α-toxin and NetB. Immune responses against either toxin can provide partial protection against NE. We have developed a fusion protein combining a non-toxic carboxy-terminal domain of the α-toxin (PlcC) and an attenuated, mutant form of NetB (NetB-W262A) for use as a vaccine antigen to immunize poultry against NE. We utilized a DNA sequence that was codon-optimized for Nicotiana benthamiana to enable high levels of expression. The 6-His tagged PlcC-NetB fusion protein was synthesized in N. benthamiana using a geminiviral replicon transient expression system. The fusion protein was purified by metal affinity chromatography and used to immunize broiler birds. Immunized birds produced a strong serum IgY response against both the plant produced PlcC-NetB protein and against bacterially produced His-PlcC and His-NetB. However, the PlcC-NetB fusion had antibody titers four times that of the bacterially produced toxoids alone. Immunized birds were significantly protected against a subsequent in-feed challenge with virulent C. perfringens when treated with the fusion protein. These results indicate that a plant-produced PlcC-NetB is a promising vaccine candidate for controlling NE in poultry.
ContributorsHunter, Joseph G (Author) / Mason, Hugh (Thesis advisor) / Mor, Tsafrir (Committee member) / Blattman, Joseph (Committee member) / Arizona State University (Publisher)
Created2018
168508-Thumbnail Image.png
Description
The growing field of immunotherapy has generated numerous promising diseasetreatment platforms in recent years. By utilizing the innate capabilities of the immune system, these treatments have provided a unique, simplistic approach to targeting and eliminating cancer. Among these, the bispecific T cell engager (BiTEÒ) model has demonstrated potential as a

The growing field of immunotherapy has generated numerous promising diseasetreatment platforms in recent years. By utilizing the innate capabilities of the immune system, these treatments have provided a unique, simplistic approach to targeting and eliminating cancer. Among these, the bispecific T cell engager (BiTEÒ) model has demonstrated potential as a treatment capable of bringing immune cells into contact with cancer cells of interest and initiating perforin/granzyme-mediated cell death of the tumor. While standard BiTE platforms rely on targeting a tumor-specific receptor via its complementary antibody, no such universal receptor has been reported for glioblastoma (GBM), the most common and aggressive primary brain tumor which boasts a median survival of only 15 months. In addition to its dismal prognosis, GBM deploys several immune-evasion tactics that further complicate treatment and make targeted therapy difficult. However, it has been reported that chlorotoxin, a 36-amino acid peptide found in the venom of Leiurus quinquestriatus, binds specifically to glioma cells while not binding healthy tissue in humans. This specificity positions chlorotoxin as a prime candidate to act as a GBM-targeting moiety as one half of an immunotherapeutic treatment platform resembling the BiTE design which I describe here. Named ACDClx∆15, this fusion protein tethers a truncated chlorotoxin molecule to the variable region of a monoclonal antibody targeted to CD3ε on both CD8+ and CD4+ T cells and is theorized to bring T cells into contact with GBM in order to stimulate an artificial immune response against the tumor. Here I describe the design and production of ACDClx∆15 and test its ability to bind and activate T lymphocytes against murine GBM in vitro. ACDClx∆15 was shown to bind both GBM and T cells without binding healthy cells in vitro but did not demonstrate the ability to activate T cells in the presence of GBM.
ContributorsSchaefer, Braeden Scott (Author) / Mor, Tsafrir (Thesis advisor) / Mason, Hugh (Committee member) / Blattman, Joseph (Committee member) / Arizona State University (Publisher)
Created2021
187406-Thumbnail Image.png
Description
Life history theory offers a powerful framework to understand evolutionary selection pressures and explain how adaptive strategies use the life history trade-off and differences in cancer defenses across the tree of life. There is often some cost to the phenotype of therapeutic resistance and so sensitive cells can usually outcompete

Life history theory offers a powerful framework to understand evolutionary selection pressures and explain how adaptive strategies use the life history trade-off and differences in cancer defenses across the tree of life. There is often some cost to the phenotype of therapeutic resistance and so sensitive cells can usually outcompete resistant cells in the absence of therapy. Adaptive therapy, as an evolutionary and ecologically inspired paradigm in cancer treatment, uses the competitive interactions between drug-sensitive, and drug-resistant subclones to help suppress the drug-resistant subclones. However, there remain several open challenges in designing adaptive therapies, particularly in extending this approach to multiple drugs. Furthermore, the immune system also plays a role in preventing and controlling cancers. Life history theory may help to explain the variation in immune cell levels across the tree of life that likely contributes to variance in cancer prevalence across vertebrates. However, this has not been previously explored. This work 1) describes resistance management for cancer, lessons cancer researchers learned from farmers since adaptive evolutionary strategies were inspired by the management of resistance in agricultural pests, 2) demonstrates how adaptive therapy protocols work with gemcitabine and capecitabine in a hormone-refractory breast cancer mouse model, 3) tests for a relationship between life history strategy and the immune system, and tests for an effect of immune cells levels on cancer prevalence across vertebrates, and 4) provides a novel approach to improve the teaching of life history theory. This work applies lessons that cancer researchers learned from pest managers, who face similar issues of pesticide resistance, to control cancers. It represents the first time that multiple drugs have been used in adaptive therapy for cancer, and the first time that adaptive therapy has been used on hormone-refractory breast cancer. I found that this evolutionary approach to cancer treatment prolongs survival in mice and also selects for the slow life history strategy. I also discovered that species with slower life histories have higher concentrations of white blood cells and a higher percentage of heterophils, monocytes and segmented neutrophils. Moreover, larger platelet size is associated with higher cancer prevalence in mammals.
ContributorsSeyedi, Seyedehsareh (Author) / Maley, Carlo (Thesis advisor) / Blattman, Joseph (Committee member) / Anderson, Karen (Committee member) / Wilson, Melissa (Committee member) / Huijben, Silvie (Committee member) / Gatenby, Robert (Committee member) / Arizona State University (Publisher)
Created2023
132308-Thumbnail Image.png
Description
T cells, a component of the adaptive immune system, play an instrumental role in directing immune responses and direct cell killing in response to pathogens and cancers. T cells recognize and signal through the T cell receptor, a protein heterodimer on the surface of T cells. The T cell receptor

T cells, a component of the adaptive immune system, play an instrumental role in directing immune responses and direct cell killing in response to pathogens and cancers. T cells recognize and signal through the T cell receptor, a protein heterodimer on the surface of T cells. The T cell receptor is a highly variable structure formed via somatic recombination; the structure recognizes peptides presented on the surface of nucleated cells by major histocompatibility complex proteins in a specific receptor-restricted, peptide-restricted manner. This balance between T cell diversity and T cell specificity stands as a barrier to efficacious development of articificial T cell receptors capable of clearing disease. T cell receptors may be tailored to produce pathogen- or cancer-specific immune responses from autologous T cell populations. This necessitates a pipeline for amplification, cloning, and expression of antigen-specific T cell receptors. This study aims to utilize influenza-specific T cell receptor chains from healthy donor T cells to test a model for T cell receptor cloning and expression. This study utilizes Gateway recombination for high-throughput cloning into mammalian expression vectors. This study has successfully amplified and cloned T cell receptor chains from a population of influenza-specific T cells from donor cell transcripts into mammalian cell expression vectors. Additionally, CD8, a coreceptor for the T cell receptor complex, was successfully cloned and inserted into a vector for expression in mammalian cells. Sanger sequencing has confirmed sequences for influenza-specific T cell receptor chains and the CD8 chain. Future application of this project includes expression in mammalian non-T cells to test for efficacy of expression and, ultimately, expression in cytotoxic cells to create lymphocytes capable of antigen-specific recognition and cytolytic killing of cells of interest.
ContributorsVale, Nolan Richard (Author) / Anderson, Karen (Thesis director) / Blattman, Joseph (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132583-Thumbnail Image.png
Description
Inhibitor of growth factor 4 (ING4) is a tumor suppressor of which low expression has been associated with poor patient survival and aggressive tumor progression in breast cancer. ING4 is characterized as a transcription regulator of inflammatory genes. Among the ING4-regulated genes is CXCL10, a chemokine secreted by endothelial cells

Inhibitor of growth factor 4 (ING4) is a tumor suppressor of which low expression has been associated with poor patient survival and aggressive tumor progression in breast cancer. ING4 is characterized as a transcription regulator of inflammatory genes. Among the ING4-regulated genes is CXCL10, a chemokine secreted by endothelial cells during normal inflammation response, which induces chemotactic migration of immune cells to the site. High expression of CXCL10 has been implicated in aggressive breast cancer, but the mechanism is not well understood. A potential signaling molecule downstream of Cxcl10 is Janus Kinase 2 (Jak2), a kinase activated in normal immune response. Deregulation of Jak2 is associated with metastasis, immune evasion, and tumor progression in breast cancer. Thus, we hypothesized that the Ing4/Cxcl10/Jak2 axis plays a key role in breast cancer progression. We first investigated whether Cxcl10 affected breast cancer cell migration. We also investigated whether Cxcl10-mediated migration is dependent on ING4 expression levels. We utilized genetically engineered MDAmb231 breast cancer cells with a CRISPR/Cas9 ING4-knockout construct or a viral ING4 overexpression construct. We performed Western blot analysis to confirm Ing4 expression. Cell migration was assessed using Boyden Chamber assay with or without exogenous Cxcl10 treatment. The results showed that in the presence of Cxcl10, ING4-deficient cells had a two-fold increase in migration as compared to the vector controls, suggesting Ing4 inhibits Cxcl10-induced migration. These findings support our hypothesis that ING4-deficient tumor cells have increased migration when Cxcl10 signaling is present in breast cancer. These results implicate Ing4 is a key regulator of a chemokine-induced tumor migration. Our future plan includes evaluation of Jak2 as an intermediate signaling molecule in Cxcl10/Ing4 pathway. Therapeutic implications of these findings are targeting Cxcl10 and/or Jak2 may be effective in treating ING4-deficient aggressive breast cancer.
ContributorsArnold, Emily (Author) / Kim, Suwon (Thesis director) / Blattman, Joseph (Thesis director) / Mason, Hugh (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
Efforts to quantify the diversity of the T cell repertoire have generally been unsuccessful because not all factors accounting for diversity have been considered. In order to get an accurate representation of the T cell repertoire, one must incorporate analysis of germline gene diversity, diversity from somatic recombination, joining diversity

Efforts to quantify the diversity of the T cell repertoire have generally been unsuccessful because not all factors accounting for diversity have been considered. In order to get an accurate representation of the T cell repertoire, one must incorporate analysis of germline gene diversity, diversity from somatic recombination, joining diversity from N- and P- nucleotides, and TCR chain pairing diversity. Because of advances in high-throughput sequencing techniques, estimates have been able to account for diversity from TCR genes. However the ability to account for chain pairing diversity has been more difficult. In order to do so, single cell sorting techniques must be employed. These techniques, though effective, are time consuming and expensive. For this reason, no large-scale analyses have been done on the immune repertoires using these techniques. In this study, we propose a novel method for linking the two TCR chain sequences from an individual cell. DNA origami nanostructure technology is employed to capture and bind the TCRγ and TCRδ chain mRNA inside individual cells using probe strands complementary to the C-region of those sequences. We then use a dual-primer RT and ligation molecular strategy to link the two sequences together. The result is a single amplicon containing the CDR3 region of the TCRγ and TCRδ. This amplicon can then be easily PCR amplified using sequence specific primers, and sequenced. DNA origami nanostructures offer a rapid, cost-effective method alternative to conventional single cell sorting techniques, as both TCR mRNA can be captured on one origami molecule inside a single cell. At present, this study outlines a proof-of-principle analysis of the method to determine its functionality. Using known TCRγ and TCRδ sequences, the DNA origami and RT/PCR method was tested and resulting sequence data proved the effectiveness of the method. The original TCRγ and TCRδ sequences were linked together as a single amplicon containing both CDR3 regions of the genes. Thus, this method can be employed in further research to elucidate the γδ T cell repertoire. This technology is also easily adapted to any gene target or cell type and therefore presents a large opportunity to be used in other immune repertoire analysis and other immunological studies (such as the rapid identification and subsequent production of antibodies).
ContributorsPoindexter, Morgan Elizabeth (Author) / Blattman, Joseph (Thesis director) / Yan, Hao (Committee member) / Schoettle, Louis (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05