Matching Items (2)
Filtering by

Clear all filters

158672-Thumbnail Image.png
Description
The CRISPR/Cas9 gene-editing tool is currently in clinical trials as the excitement about its therapeutic potential is exponentially growing. However, many of the developed CRISPR based genome engineering methods cannot be broadly translated in clinical settings due to their unintended consequences. These consequences, such as immune reactions to CRISPR, immunogenic

The CRISPR/Cas9 gene-editing tool is currently in clinical trials as the excitement about its therapeutic potential is exponentially growing. However, many of the developed CRISPR based genome engineering methods cannot be broadly translated in clinical settings due to their unintended consequences. These consequences, such as immune reactions to CRISPR, immunogenic adverse events following receiving of adeno-associated virus (AAV) as one of the clinically relevant delivery agents, and CRISPR off-target activity in the genome, reinforces the necessity for improving the safety of CRISPR and the gene therapy vehicles. Research into designing more advanced CRISPR systems will allow for the increased ability of editing efficiency and safety for human applications. This work 1- develops strategies for decreasing the immunogenicity of CRISPR/Cas9 system components and improving the safety of CRISPR-based gene therapies for human subjects, 2- demonstrates the utility of this system in vivo for transient repression of components of innate and adaptive immunity, and 3- examines an inducible all-in-one CRISPR-based control switch to pave the way for controllable CRISPR-based therapies.
ContributorsMoghadam, Farzaneh (Author) / Kiani, Samira (Thesis advisor) / LaBaer, Josh (Committee member) / Ebrahimkhani, Mo (Committee member) / Arizona State University (Publisher)
Created2020
154421-Thumbnail Image.png
Description
One of the fundamental questions in molecular biology is how genes and the control of their expression give rise to so many diverse phenotypes in nature. The mRNA molecule plays a key role in this process as it directs the spatial and temporal expression of genetic information contained in the

One of the fundamental questions in molecular biology is how genes and the control of their expression give rise to so many diverse phenotypes in nature. The mRNA molecule plays a key role in this process as it directs the spatial and temporal expression of genetic information contained in the DNA molecule to precisely instruct biological processes in living organisms. The region located between the STOP codon and the poly(A)-tail of the mature mRNA, known as the 3′Untranslated Region (3′UTR), is a key modulator of these activities. It contains numerous sequence elements that are targeted by trans-acting factors that dose gene expression, including the repressive small non-coding RNAs, called microRNAs.

Recent transcriptome data from yeast, worm, plants, and humans has shown that alternative polyadenylation (APA), a mechanism that enables expression of multiple 3′UTR isoforms for the same gene, is widespread in eukaryotic organisms. It is still poorly understood why metazoans require multiple 3′UTRs for the same gene, but accumulating evidence suggests that APA is largely regulated at a tissue-specific level. APA may direct combinatorial variation between cis-elements and microRNAs, perhaps to regulate gene expression in a tissue-specific manner. Apart from a few single gene anecdotes, this idea has not been systematically explored.

This dissertation research employs a systems biology approach to study the somatic tissue dynamics of APA and its impact on microRNA targeting networks in the small nematode C. elegans. In the first aim, tools were developed and applied to isolate and sequence mRNA from worm intestine and muscle tissues, which revealed pervasive tissue-specific APA correlated with microRNA regulation. The second aim provides genetic evidence that two worm genes use APA to escape repression by microRNAs in the body muscle. Finally, in aim three, mRNA from five additional somatic worm tissues was sequenced and their 3′ends mapped, allowing for an integrative study of APA and microRNA targeting dynamics in worms. Together, this work provides evidence that APA is a pervasive mechanism operating in somatic tissues of C. elegans with the potential to significantly rearrange their microRNA regulatory networks and precisely dose their gene expression.
ContributorsBlazie, Stephen M (Author) / Mangone, Marco (Thesis advisor) / LaBaer, Josh (Committee member) / Lake, Doug (Committee member) / Newfeld, Stuart (Committee member) / Arizona State University (Publisher)
Created2016