Matching Items (20)
Filtering by

Clear all filters

151992-Thumbnail Image.png
Description
Dimensionality assessment is an important component of evaluating item response data. Existing approaches to evaluating common assumptions of unidimensionality, such as DIMTEST (Nandakumar & Stout, 1993; Stout, 1987; Stout, Froelich, & Gao, 2001), have been shown to work well under large-scale assessment conditions (e.g., large sample sizes and item pools;

Dimensionality assessment is an important component of evaluating item response data. Existing approaches to evaluating common assumptions of unidimensionality, such as DIMTEST (Nandakumar & Stout, 1993; Stout, 1987; Stout, Froelich, & Gao, 2001), have been shown to work well under large-scale assessment conditions (e.g., large sample sizes and item pools; see e.g., Froelich & Habing, 2007). It remains to be seen how such procedures perform in the context of small-scale assessments characterized by relatively small sample sizes and/or short tests. The fact that some procedures come with minimum allowable values for characteristics of the data, such as the number of items, may even render them unusable for some small-scale assessments. Other measures designed to assess dimensionality do not come with such limitations and, as such, may perform better under conditions that do not lend themselves to evaluation via statistics that rely on asymptotic theory. The current work aimed to evaluate the performance of one such metric, the standardized generalized dimensionality discrepancy measure (SGDDM; Levy & Svetina, 2011; Levy, Xu, Yel, & Svetina, 2012), under both large- and small-scale testing conditions. A Monte Carlo study was conducted to compare the performance of DIMTEST and the SGDDM statistic in terms of evaluating assumptions of unidimensionality in item response data under a variety of conditions, with an emphasis on the examination of these procedures in small-scale assessments. Similar to previous research, increases in either test length or sample size resulted in increased power. The DIMTEST procedure appeared to be a conservative test of the null hypothesis of unidimensionality. The SGDDM statistic exhibited rejection rates near the nominal rate of .05 under unidimensional conditions, though the reliability of these results may have been less than optimal due to high sampling variability resulting from a relatively limited number of replications. Power values were at or near 1.0 for many of the multidimensional conditions. It was only when the sample size was reduced to N = 100 that the two approaches diverged in performance. Results suggested that both procedures may be appropriate for sample sizes as low as N = 250 and tests as short as J = 12 (SGDDM) or J = 19 (DIMTEST). When used as a diagnostic tool, SGDDM may be appropriate with as few as N = 100 cases combined with J = 12 items. The study was somewhat limited in that it did not include any complex factorial designs, nor were the strength of item discrimination parameters or correlation between factors manipulated. It is recommended that further research be conducted with the inclusion of these factors, as well as an increase in the number of replications when using the SGDDM procedure.
ContributorsReichenberg, Ray E (Author) / Levy, Roy (Thesis advisor) / Thompson, Marilyn S. (Thesis advisor) / Green, Samuel B. (Committee member) / Arizona State University (Publisher)
Created2013
137055-Thumbnail Image.png
Description
This creative project explores the trend of designer/synthetic drug use in Arizona and nationwide. The project serves as "gap research" - bringing to light the problem of limited use statistics and constantly-changing drug chemical compounds. The project was thoroughly researched using media reports, psychology/drug addiction experts, community education organizers and

This creative project explores the trend of designer/synthetic drug use in Arizona and nationwide. The project serves as "gap research" - bringing to light the problem of limited use statistics and constantly-changing drug chemical compounds. The project was thoroughly researched using media reports, psychology/drug addiction experts, community education organizers and available healthcare statistics. The results provided not definitive answer other than that more work needs to be done in the area of synthetic drug use. Parents and youth must educate themselves on the dangers of using these "legal" drugs.
ContributorsFischer, April Lee (Author) / Doig, Stephen (Thesis director) / Olive, Foster (Committee member) / Barrett, The Honors College (Contributor) / Walter Cronkite School of Journalism and Mass Communication (Contributor)
Created2014-05
135445-Thumbnail Image.png
Description
While former New York Yankees pitcher Goose Gossage unleashed his tirade on the deterioration of the unwritten rules of baseball and nerds ruining the sport about halfway through my writing of the paper, sentiments like his were inspiration for my topic: the evolution of statistics and data in baseball. By

While former New York Yankees pitcher Goose Gossage unleashed his tirade on the deterioration of the unwritten rules of baseball and nerds ruining the sport about halfway through my writing of the paper, sentiments like his were inspiration for my topic: the evolution of statistics and data in baseball. By telling the story of how baseball data and statistics have evolved, my goal was to also demonstrate how they have been intertwined since the beginning—which would essentially mean that nerds have always been ruining the sport (if you subscribe to that kind of thought).

In the quest to showcase this, it was necessary to document how baseball prospers from numbers and numbers prosper from baseball. The relationship between the two is mutualistic. Furthermore, an all-encompassing historical look at how data and statistics in baseball have matured was a critical portion of the paper. With a metric such as batting average going from a radical new measure that posed a threat to the status quo, to a fiercely cherished statistic that was suddenly being unseated by advanced analytics, it shows the creation of new and destruction of old has been incessant. Innovators like Pete Palmer, Dick Cramer and Bill James played a large role in this process in the 1980s. Computers aided their effort and when paired with the Internet, unleashed the ability to crunch data to an even larger sector of the population. The unveiling of Statcast at the commencement of the 2015 season showed just how much potential there is for measuring previously unquantifiable baseball acts.

Essentially, there will always be people who mourn the presence of data and statistics in baseball. Despite this, the evolution story indicates baseball and numbers will be intertwined into the future, likely to an even greater extent than ever before, as technology and new philosophies become increasingly integrated into front offices and clubhouses.
ContributorsGarcia, Jacob Michael (Author) / Kurland, Brett (Thesis director) / Doig, Stephen (Committee member) / Jackson, Victoria (Committee member) / Walter Cronkite School of Journalism and Mass Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
190981-Thumbnail Image.png
Description
As the impacts of climate change worsen in the coming decades, natural hazards are expected to increase in frequency and intensity, leading to increased loss and risk to human livelihood. The spatio-temporal statistical approaches developed and applied in this dissertation highlight the ways in which hazard data can be leveraged

As the impacts of climate change worsen in the coming decades, natural hazards are expected to increase in frequency and intensity, leading to increased loss and risk to human livelihood. The spatio-temporal statistical approaches developed and applied in this dissertation highlight the ways in which hazard data can be leveraged to understand loss trends, build forecasts, and study societal impacts of losses. Specifically, this work makes use of the Spatial Hazard Events and Losses Database which is an unparalleled source of loss data for the United States. The first portion of this dissertation develops accurate loss baselines that are crucial for mitigation planning, infrastructure investment, and risk communication. This is accomplished thorough a stationarity analysis of county level losses following a normalization procedure. A wide variety of studies employ loss data without addressing stationarity assumptions or the possibility for spurious regression. This work enables the statistically rigorous application of such loss time series to modeling applications. The second portion of this work develops a novel matrix variate dynamic factor model for spatio-temporal loss data stratified across multiple correlated hazards or perils. The developed model is employed to analyze and forecast losses from convective storms, which constitute some of the highest losses covered by insurers. Adopting factor-based approach, forecasts are achieved despite the complex and often unobserved underlying drivers of these losses. The developed methodology extends the literature on dynamic factor models to matrix variate time series. Specifically, a covariance structure is imposed that is well suited to spatio-temporal problems while significantly reducing model complexity. The model is fit via the EM algorithm and Kalman filter. The third and final part of this dissertation investigates the impact of compounding hazard events on state and regional migration in the United States. Any attempt to capture trends in climate related migration must account for the inherent uncertainties surrounding climate change, natural hazard occurrences, and socioeconomic factors. For this reason, I adopt a Bayesian modeling approach that enables the explicit estimation of the inherent uncertainty. This work can provide decision-makers with greater clarity regarding the extent of knowledge on climate trends.
ContributorsBoyle, Esther Sarai (Author) / Jevtic, Petar (Thesis advisor) / Lanchier, Nicolas (Thesis advisor) / Lan, Shiwei (Committee member) / Cheng, Dan (Committee member) / Fricks, John (Committee member) / Gall, Melanie (Committee member) / Cutter, Susan (Committee member) / McNicholas, Paul (Committee member) / Arizona State University (Publisher)
Created2023
171927-Thumbnail Image.png
Description
Tracking disease cases is an essential task in public health; however, tracking the number of cases of a disease may be difficult not every infection can be recorded by public health authorities. Notably, this may happen with whole country measles case reports, even such countries with robust registration systems.

Tracking disease cases is an essential task in public health; however, tracking the number of cases of a disease may be difficult not every infection can be recorded by public health authorities. Notably, this may happen with whole country measles case reports, even such countries with robust registration systems. Eilertson et al. (2019) propose using a state-space model combined with maximum likelihood methods for estimating measles transmission. A Bayesian approach that uses particle Markov Chain Monte Carlo (pMCMC) is proposed to estimate the parameters of the non-linear state-space model developed in Eilertson et al. (2019) and similar previous studies. This dissertation illustrates the performance of this approach by calculating posterior estimates of the model parameters and predictions of the unobserved states in simulations and case studies. Also, Iteration Filtering (IF2) is used as a support method to verify the Bayesian estimation and to inform the selection of prior distributions. In the second half of the thesis, a birth-death process is proposed to model the unobserved population size of a disease vector. This model studies the effect of a disease vector population size on a second affected population. The second population follows a non-homogenous Poisson process when conditioned on the vector process with a transition rate given by a scaled version of the vector population. The observation model also measures a potential threshold event when the host species population size surpasses a certain level yielding a higher transmission rate. A maximum likelihood procedure is developed for this model, which combines particle filtering with the Minorize-Maximization (MM) algorithm and extends the work of Crawford et al. (2014).
ContributorsMartinez Rivera, Wilmer Osvaldo (Author) / Fricks, John (Thesis advisor) / Reiser, Mark (Committee member) / Zhou, Shuang (Committee member) / Cheng, Dan (Committee member) / Lan, Shiwei (Committee member) / Arizona State University (Publisher)
Created2022
189356-Thumbnail Image.png
Description
This dissertation comprises two projects: (i) Multiple testing of local maxima for detection of peaks and change points with non-stationary noise, and (ii) Height distributions of critical points of smooth isotropic Gaussian fields: computations, simulations and asymptotics. The first project introduces a topological multiple testing method for one-dimensional domains to

This dissertation comprises two projects: (i) Multiple testing of local maxima for detection of peaks and change points with non-stationary noise, and (ii) Height distributions of critical points of smooth isotropic Gaussian fields: computations, simulations and asymptotics. The first project introduces a topological multiple testing method for one-dimensional domains to detect signals in the presence of non-stationary Gaussian noise. The approach involves conducting tests at local maxima based on two observation conditions: (i) the noise is smooth with unit variance and (ii) the noise is not smooth where kernel smoothing is applied to increase the signal-to-noise ratio (SNR). The smoothed signals are then standardized, which ensures that the variance of the new sequence's noise becomes one, making it possible to calculate $p$-values for all local maxima using random field theory. Assuming unimodal true signals with finite support and non-stationary Gaussian noise that can be repeatedly observed. The algorithm introduced in this work, demonstrates asymptotic strong control of the False Discovery Rate (FDR) and power consistency as the number of sequence repetitions and signal strength increase. Simulations indicate that FDR levels can also be controlled under non-asymptotic conditions with finite repetitions. The application of this algorithm to change point detection also guarantees FDR control and power consistency. The second project focuses on investigating the explicit and asymptotic height densities of critical points of smooth isotropic Gaussian random fields on both Euclidean space and spheres.The formulae are based on characterizing the distribution of the Hessian of the Gaussian field using the Gaussian orthogonally invariant (GOI) matrices and the Gaussian orthogonal ensemble (GOE) matrices, which are special cases of GOI matrices. However, as the dimension increases, calculating explicit formulae becomes computationally challenging. The project includes two simulation methods for these distributions. Additionally, asymptotic distributions are obtained by utilizing the asymptotic distribution of the eigenvalues (excluding the maximum eigenvalues) of the GOE matrix for large dimensions. However, when it comes to the maximum eigenvalue, the Tracy-Widom distribution is utilized. Simulation results demonstrate the close approximation between the asymptotic distribution and the real distribution when $N$ is sufficiently large.
Contributorsgu, shuang (Author) / Cheng, Dan (Thesis advisor) / Lopes, Hedibert (Committee member) / Fricks, John (Committee member) / Lan, Shiwei (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2023
156621-Thumbnail Image.png
Description
Investigation of measurement invariance (MI) commonly assumes correct specification of dimensionality across multiple groups. Although research shows that violation of the dimensionality assumption can cause bias in model parameter estimation for single-group analyses, little research on this issue has been conducted for multiple-group analyses. This study explored the effects of

Investigation of measurement invariance (MI) commonly assumes correct specification of dimensionality across multiple groups. Although research shows that violation of the dimensionality assumption can cause bias in model parameter estimation for single-group analyses, little research on this issue has been conducted for multiple-group analyses. This study explored the effects of mismatch in dimensionality between data and analysis models with multiple-group analyses at the population and sample levels. Datasets were generated using a bifactor model with different factor structures and were analyzed with bifactor and single-factor models to assess misspecification effects on assessments of MI and latent mean differences. As baseline models, the bifactor models fit data well and had minimal bias in latent mean estimation. However, the low convergence rates of fitting bifactor models to data with complex structures and small sample sizes caused concern. On the other hand, effects of fitting the misspecified single-factor models on the assessments of MI and latent means differed by the bifactor structures underlying data. For data following one general factor and one group factor affecting a small set of indicators, the effects of ignoring the group factor in analysis models on the tests of MI and latent mean differences were mild. In contrast, for data following one general factor and several group factors, oversimplifications of analysis models can lead to inaccurate conclusions regarding MI assessment and latent mean estimation.
ContributorsXu, Yuning (Author) / Green, Samuel (Thesis advisor) / Levy, Roy (Committee member) / Thompson, Marilyn (Committee member) / Arizona State University (Publisher)
Created2018
157145-Thumbnail Image.png
Description
A simulation study was conducted to explore the robustness of general factor mean difference estimation in bifactor ordered-categorical data. In the No Differential Item Functioning (DIF) conditions, the data generation conditions varied were sample size, the number of categories per item, effect size of the general factor mean difference, and

A simulation study was conducted to explore the robustness of general factor mean difference estimation in bifactor ordered-categorical data. In the No Differential Item Functioning (DIF) conditions, the data generation conditions varied were sample size, the number of categories per item, effect size of the general factor mean difference, and the size of specific factor loadings; in data analysis, misspecification conditions were introduced in which the generated bifactor data were fit using a unidimensional model, and/or ordered-categorical data were treated as continuous data. In the DIF conditions, the data generation conditions varied were sample size, the number of categories per item, effect size of latent mean difference for the general factor, the type of item parameters that had DIF, and the magnitude of DIF; the data analysis conditions varied in whether or not setting equality constraints on the noninvariant item parameters.

Results showed that falsely fitting bifactor data using unidimensional models or failing to account for DIF in item parameters resulted in estimation bias in the general factor mean difference, while treating ordinal data as continuous had little influence on the estimation bias as long as there was no severe model misspecification. The extent of estimation bias produced by misspecification of bifactor datasets with unidimensional models was mainly determined by the degree of unidimensionality (i.e., size of specific factor loadings) and the general factor mean difference size. When the DIF was present, the estimation accuracy of the general factor mean difference was completely robust to ignoring noninvariance in specific factor loadings while it was very sensitive to failing to account for DIF in threshold parameters. With respect to ignoring the DIF in general factor loadings, the estimation bias of the general factor mean difference was substantial when the DIF was -0.15, and it can be negligible for smaller sizes of DIF. Despite the impact of model misspecification on estimation accuracy, the power to detect the general factor mean difference was mainly influenced by the sample size and effect size. Serious Type I error rate inflation only occurred when the DIF was present in threshold parameters.
ContributorsLiu, Yixing (Author) / Thompson, Marilyn (Thesis advisor) / Levy, Roy (Committee member) / O’Rourke, Holly (Committee member) / Arizona State University (Publisher)
Created2019
154040-Thumbnail Image.png
Description
Currently, there is a clear gap in the missing data literature for three-level models.

To date, the literature has only focused on the theoretical and algorithmic work

required to implement three-level imputation using the joint model (JM) method of

imputation, leaving relatively no work done on fully conditional specication (FCS)

method. Moreover, the literature

Currently, there is a clear gap in the missing data literature for three-level models.

To date, the literature has only focused on the theoretical and algorithmic work

required to implement three-level imputation using the joint model (JM) method of

imputation, leaving relatively no work done on fully conditional specication (FCS)

method. Moreover, the literature lacks any methodological evaluation of three-level

imputation. Thus, this thesis serves two purposes: (1) to develop an algorithm in

order to implement FCS in the context of a three-level model and (2) to evaluate

both imputation methods. The simulation investigated a random intercept model

under both 20% and 40% missing data rates. The ndings of this thesis suggest

that the estimates for both JM and FCS were largely unbiased, gave good coverage,

and produced similar results. The sole exception for both methods was the slope for

the level-3 variable, which was modestly biased. The bias exhibited by the methods

could be due to the small number of clusters used. This nding suggests that future

research ought to investigate and establish clear recommendations for the number of

clusters required by these imputation methods. To conclude, this thesis serves as a

preliminary start in tackling a much larger issue and gap in the current missing data

literature.
ContributorsKeller, Brian Tinnell (Author) / Enders, Craig K. (Thesis advisor) / Grimm, Kevin J. (Committee member) / Levy, Roy (Committee member) / Arizona State University (Publisher)
Created2015
154498-Thumbnail Image.png
Description
A simulation study was conducted to explore the influence of partial loading invariance and partial intercept invariance on the latent mean comparison of the second-order factor within a higher-order confirmatory factor analysis (CFA) model. Noninvariant loadings or intercepts were generated to be at one of the two levels or both

A simulation study was conducted to explore the influence of partial loading invariance and partial intercept invariance on the latent mean comparison of the second-order factor within a higher-order confirmatory factor analysis (CFA) model. Noninvariant loadings or intercepts were generated to be at one of the two levels or both levels for a second-order CFA model. The numbers and directions of differences in noninvariant loadings or intercepts were also manipulated, along with total sample size and effect size of the second-order factor mean difference. Data were analyzed using correct and incorrect specifications of noninvariant loadings and intercepts. Results summarized across the 5,000 replications in each condition included Type I error rates and powers for the chi-square difference test and the Wald test of the second-order factor mean difference, estimation bias and efficiency for this latent mean difference, and means of the standardized root mean square residual (SRMR) and the root mean square error of approximation (RMSEA).

When the model was correctly specified, no obvious estimation bias was observed; when the model was misspecified by constraining noninvariant loadings or intercepts to be equal, the latent mean difference was overestimated if the direction of the difference in loadings or intercepts of was consistent with the direction of the latent mean difference, and vice versa. Increasing the number of noninvariant loadings or intercepts resulted in larger estimation bias if these noninvariant loadings or intercepts were constrained to be equal. Power to detect the latent mean difference was influenced by estimation bias and the estimated variance of the difference in the second-order factor mean, in addition to sample size and effect size. Constraining more parameters to be equal between groups—even when unequal in the population—led to a decrease in the variance of the estimated latent mean difference, which increased power somewhat. Finally, RMSEA was very sensitive for detecting misspecification due to improper equality constraints in all conditions in the current scenario, including the nonzero latent mean difference, but SRMR did not increase as expected when noninvariant parameters were constrained.
ContributorsLiu, Yixing (Author) / Thompson, Marilyn (Thesis advisor) / Green, Samuel (Committee member) / Levy, Roy (Committee member) / Arizona State University (Publisher)
Created2016