Matching Items (10)
Filtering by

Clear all filters

150385-Thumbnail Image.png
Description
In nearly all commercially successful internal combustion engine applications, the slider crank mechanism is used to convert the reciprocating motion of the piston into rotary motion. The hypocycloid mechanism, wherein the crankshaft is replaced with a novel gearing arrangement, is a viable alternative to the slider crank mechanism. The geared

In nearly all commercially successful internal combustion engine applications, the slider crank mechanism is used to convert the reciprocating motion of the piston into rotary motion. The hypocycloid mechanism, wherein the crankshaft is replaced with a novel gearing arrangement, is a viable alternative to the slider crank mechanism. The geared hypocycloid mechanism allows for linear motion of the connecting rod and provides a method for perfect balance with any number of cylinders including single cylinder applications. A variety of hypocycloid engine designs and research efforts have been undertaken and produced successful running prototypes. Wiseman Technologies, Inc provided one of these prototypes to this research effort. This two-cycle 30cc half crank hypocycloid engine has shown promise in several performance categories including balance and efficiency. To further investigate its potential a more thorough and scientific analysis was necessary and completed in this research effort. The major objective of the research effort was to critically evaluate and optimize the Wiseman prototype for maximum performance in balance, efficiency, and power output. A nearly identical slider crank engine was used extensively to establish baseline performance data and make comparisons. Specialized equipment and methods were designed and built to collect experimental data on both engines. Simulation and mathematical models validated by experimental data collection were used to better quantify performance improvements. Modifications to the Wiseman prototype engine improved balance by 20 to 50% (depending on direction) and increased peak power output by 24%.
ContributorsConner, Thomas (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Georgeou, Trian (Committee member) / Arizona State University (Publisher)
Created2011
152246-Thumbnail Image.png
Description
Smoke entering a flight deck cabin has been an issue for commercial aircraft for many years. The issue for a flight crew is how to mitigate the smoke so that they can safely fly the aircraft. For this thesis, the feasibility of having a Negative Pressure System that utilizes the

Smoke entering a flight deck cabin has been an issue for commercial aircraft for many years. The issue for a flight crew is how to mitigate the smoke so that they can safely fly the aircraft. For this thesis, the feasibility of having a Negative Pressure System that utilizes the cabin altitude pressure and outside altitude pressure to remove smoke from a flight deck was studied. Existing procedures for flight crews call for a descent down to a safe level for depressurizing the aircraft before taking further action. This process takes crucial time that is critical to the flight crew's ability to keep aware of the situation. This process involves a flight crews coordination and fast thinking to manually take control of the aircraft; which has become increasing more difficult due to the advancements in aircraft automation. Unfortunately this is the only accepted procedure that is used by a flight crew. Other products merely displace the smoke. This displacement is after the time it takes for the flight crew to set up the smoke displacement unit with no guarantee that a flight crew will be able to see or use all of the aircraft's controls. The Negative Pressure System will work automatically and not only use similar components already found on the aircraft, but work in conjunction with the smoke detection system and pressurization system so smoke removal can begin without having to descend down to a lower altitude. In order for this system to work correctly many factors must be taken into consideration. The size of a flight deck varies from aircraft to aircraft, therefore the ability for the system to efficiently remove smoke from an aircraft is taken into consideration. For the system to be feasible on an aircraft the cost and weight must be taken into consideration as the added fuel consumption due to weight of the system may be the limiting factor for installing such a system on commercial aircraft.
ContributorsDavies, Russell (Author) / Rogers, Bradley (Thesis advisor) / Palmgren, Dale (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2013
150928-Thumbnail Image.png
Description
Photovoltaic (PV) modules are typically rated at three test conditions: STC (standard test conditions), NOCT (nominal operating cell temperature) and Low E (low irradiance). The current thesis deals with the power rating of PV modules at twenty-three test conditions as per the recent International Electrotechnical Commission (IEC) standard of IEC

Photovoltaic (PV) modules are typically rated at three test conditions: STC (standard test conditions), NOCT (nominal operating cell temperature) and Low E (low irradiance). The current thesis deals with the power rating of PV modules at twenty-three test conditions as per the recent International Electrotechnical Commission (IEC) standard of IEC 61853 – 1. In the current research, an automation software tool developed by a previous researcher of ASU – PRL (ASU Photovoltaic Reliability Laboratory) is validated at various stages. Also in the current research, the power rating of PV modules for four different manufacturers is carried out according to IEC 61853 – 1 standard using a new outdoor test method. The new outdoor method described in this thesis is very different from the one reported by a previous researcher of ASU – PRL. The new method was designed to reduce the labor hours in collecting the current-voltage ( I – V) curves at various temperatures and irradiance levels. The power matrices for all the four manufacturers were generated using the I – V data generated at different temperatures and irradiance levels and the translation procedures described in IEC 60891 standard. All the measurements were carried out on both clear and cloudy days using an automated 2 – axis tracker located at ASU – PRL, Mesa, Arizona. The modules were left on the 2 – axis tracker for 12 continuous days and the data was continuously and automatically collected for every two minutes from 6 am to 6 pm. In order to obtain the I – V data at wide range of temperatures and irradiance levels, four identical (or nearly identical) modules were simultaneously installed on the 2 – axis tracker with and without thermal insulators on the back of the modules and with and without mesh screens on the front of the modules. Several issues related to the automation software were uncovered and the required improvement in the software has been suggested. The power matrices for four manufacturers have been successfully generated using the new outdoor test method developed in this work. The data generated in this work has been extensively analyzed for accuracy and for performance efficiency comparison at various temperatures and irradiance levels.
ContributorsVemula, Meena Gupta (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Macia, Narcio F. (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
153712-Thumbnail Image.png
Description
This is a two-part thesis:

Part 1 characterizes soiling losses using various techniques to understand the effect of soiling on photovoltaic modules. The higher the angle of incidence (AOI), the lower will be the photovoltaic (PV) module performance. Our research group has already reported the AOI investigation for cleaned modules

This is a two-part thesis:

Part 1 characterizes soiling losses using various techniques to understand the effect of soiling on photovoltaic modules. The higher the angle of incidence (AOI), the lower will be the photovoltaic (PV) module performance. Our research group has already reported the AOI investigation for cleaned modules of five different technologies with air/glass interface. However, the modules that are installed in the field would invariably develop a soil layer with varying thickness depending on the site condition, rainfall and tilt angle. The soiled module will have the air/soil/glass interface rather than air/glass interface. This study investigates the AOI variations on soiled modules of five different PV technologies. It is demonstrated that AOI effect is inversely proportional to the soil density. In other words, the power or current loss between clean and soiled modules would be much higher at a higher AOI than at a lower AOI leading to excessive energy production loss of soiled modules on cloudy days, early morning hours and late afternoon hours. Similarly, the spectral influence of soil on the performance of the module was investigated through reflectance and transmittance measurements. It was observed that the reflectance and transmittances losses vary linearly with soil density variation and the 600-700 nm band was identified as an ideal band for soil density measurements.

Part 2 of this thesis performs statistical risk analysis for a power plant through FMECA (Failure Mode, Effect, and Criticality Analysis) based on non-destructive field techniques and count data of the failure modes. Risk Priority Number is used for the grading guideline for criticality analysis. The analysis was done on a 19-year-old power plant in cold-dry climate to identify the most dominant failure and degradation modes. In addition, a comparison study was done on the current power plant (framed) along with another 18-year-old (frameless) from the same climate zone to understand the failure modes for cold-dry climatic condition.
ContributorsBoppana, Sravanthi (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2015
154103-Thumbnail Image.png
Description
The complicated, unpredictable, and often chaotic hot water usage pattern of typical households severely limits the effectiveness and efficiency of traditional solar hot water heater systems. Similar to large scale concentrating solar power plants, the use of thermal energy storage techniques to store collected solar energy as latent heat has

The complicated, unpredictable, and often chaotic hot water usage pattern of typical households severely limits the effectiveness and efficiency of traditional solar hot water heater systems. Similar to large scale concentrating solar power plants, the use of thermal energy storage techniques to store collected solar energy as latent heat has the potential to improve the efficiency of solar hot water systems. Rather than being used to produce steam to generate electricity, the stored thermal energy would be used to heat water on-demand well after the sun sets. The scope of this thesis was to design, analyze, build, and test a proof of concept prototype for an on-demand solar water heater for residential use with latent heat thermal energy storage. The proof of concept system will be used for future research and can be quickly reconfigured making it ideal for use as a test bed. This thesis outlines the analysis, design, and testing processes used to model, build, and evaluate the performance of the prototype system.

The prototype system developed to complete this thesis was designed using systems engineering principles and consists of several main subsystems. These subsystems include a parabolic trough concentrating solar collector, a phase change material reservoir including heat exchangers, a heat transfer fluid reservoir, and a plumbing system. The system functions by absorbing solar thermal energy in a heat transfer fluid using the solar collector and transferring the absorbed thermal energy to the phase change material for storage. The system was analyzed using a mathematical model created in MATLAB and experimental testing was used to verify that the system functioned as designed. The mathematical model was designed to be adaptable for evaluating different system configurations for future research. The results of the analysis as well as the experimental tests conducted, verify that the proof of concept system is functional and capable of producing hot water using stored thermal energy. This will allow the system to function as a test bed for future research and long-term performance testing to evaluate changes in the performance of the phase change material over time. With additional refinement the prototype system has the potential to be developed into a commercially viable product for use in residential homes.
ContributorsPetre, Andrew (Author) / Rajadas, John N (Thesis advisor) / Madakannan, Arunachalanadar (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2015
Description
In this work, the hydrodynamics of Suction Stabilization is studied. Suction stabilization was found to stabilize floating platforms/floats in a much better way as compared to the conventional methods. This was achieved by an effective increment in the metacentric height due to the Inverse Slack Tank (IST) effect. The

In this work, the hydrodynamics of Suction Stabilization is studied. Suction stabilization was found to stabilize floating platforms/floats in a much better way as compared to the conventional methods. This was achieved by an effective increment in the metacentric height due to the Inverse Slack Tank (IST) effect. The study involves the analysis of the existing designs and optimizing its performance. This research investigates the stability of such floats and the hydrodynamic forces acting on the same for offshore applications, such as wind turbines. A simple mathematical model for the condition of parametric resonance is developed and the results are verified, both analytically and experimentally.
ContributorsCherangara Subramanian, Susheelkumar (Author) / Redkar, Sangram (Thesis advisor) / Rajadas, John (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2014
153069-Thumbnail Image.png
Description
This is a two part thesis:

Part 1 of this thesis determines the most dominant failure modes of field aged photovoltaic (PV) modules using experimental data and statistical analysis, FMECA (Failure Mode, Effect, and Criticality Analysis). The failure and degradation modes of about 5900 crystalline-Si glass/polymer modules fielded for 6 to

This is a two part thesis:

Part 1 of this thesis determines the most dominant failure modes of field aged photovoltaic (PV) modules using experimental data and statistical analysis, FMECA (Failure Mode, Effect, and Criticality Analysis). The failure and degradation modes of about 5900 crystalline-Si glass/polymer modules fielded for 6 to 16 years in three different photovoltaic (PV) power plants with different mounting systems under the hot-dry desert climate of Arizona are evaluated. A statistical reliability tool, FMECA that uses Risk Priority Number (RPN) is performed for each PV power plant to determine the dominant failure modes in the modules by means of ranking and prioritizing the modes. This study on PV power plants considers all the failure and degradation modes from both safety and performance perspectives, and thus, comes to the conclusion that solder bond fatigue/failure with/without gridline/metallization contact fatigue/failure is the most dominant failure mode for these module types in the hot-dry desert climate of Arizona.

Part 2 of this thesis determines the best method to compute degradation rates of PV modules. Three different PV systems were evaluated to compute degradation rates using four methods and they are: I-V measurement, metered kWh, performance ratio (PR) and performance index (PI). I-V method, being an ideal method for degradation rate computation, were compared to the results from other three methods. The median degradation rates computed from kWh method were within ±0.15% from I-V measured degradation rates (0.9-1.37 %/year of three models). Degradation rates from the PI method were within ±0.05% from the I-V measured rates for two systems but the calculated degradation rate was remarkably different (±1%) from the I-V method for the third system. The degradation rate from the PR method was within ±0.16% from the I-V measured rate for only one system but were remarkably different (±1%) from the I-V measured rate for the other two systems. Thus, it was concluded that metered raw kWh method is the best practical method, after I-V method and PI method (if ground mounted POA insolation and other weather data are available) for degradation computation as this method was found to be fairly accurate, easy, inexpensive, fast and convenient.
ContributorsShrestha, Sanjay (Author) / Tamizhmani, Govindsamy (Thesis advisor) / Srinivasan, Devrajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2014
156349-Thumbnail Image.png
Description
In this work, different methods for fabrication of flexible sensors and sensor characterization are studied. Using materials and equipment that is unconventional, it is shown that different processes can be used to create sensors that behave like commercially available sensors. The reason unconventional methods are used is to cut down

In this work, different methods for fabrication of flexible sensors and sensor characterization are studied. Using materials and equipment that is unconventional, it is shown that different processes can be used to create sensors that behave like commercially available sensors. The reason unconventional methods are used is to cut down on cost to produce the sensors as well as enabling the manufacture of custom sensors in different sizes and different configurations. Currently commercially available sensors are expensive and are usually designed for very specific applications. By creating these same types of sensors using new methods and materials, these new sensors will show that flexible sensor creation for many uses at a fraction of the cost is achievable.
ContributorsCasanova, Lucas Montgomery (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2018
158250-Thumbnail Image.png
Description
Electrostatic Discharge (ESD) is a unique issue in the electronics industry that can cause failures of electrical components and complete electronic systems. There is an entire industry that is focused on developing ESD compliant tooling using traditional manufacturing methods. This research work evaluates the feasibility to fabricate a

Electrostatic Discharge (ESD) is a unique issue in the electronics industry that can cause failures of electrical components and complete electronic systems. There is an entire industry that is focused on developing ESD compliant tooling using traditional manufacturing methods. This research work evaluates the feasibility to fabricate a PEEK-Carbon Nanotube composite filament for Fused Filament Fabrication (FFF) Additive Manufacturing that is ESD compliant. In addition, it demonstrates that the FFF process can be used to print tools with the required accuracy, ESD compliance and mechanical properties necessary for the electronics industry at a low rate production level. Current Additive Manufacturing technology can print high temperature polymers, such as PEEK, with the required mechanical properties but they are not ESD compliant and require post processing to create a product that is. There has been some research conducted using mixed multi-wall and single wall carbon nanotubes in a PEEK polymers, which improves mechanical properties while reducing bulk resistance to the levels required to be ESD compliant. This previous research has been used to develop a PEEK-CNT polymer matrix for the Fused Filament Fabrication additive manufacturing process
ContributorsChurchwell, Raymond L (Author) / Sugar, Thomas (Thesis advisor) / Rogers, Bradley (Committee member) / Morrell, Darryl (Committee member) / Arizona State University (Publisher)
Created2020
161841-Thumbnail Image.png
Description
The inherent behavior of many real world applications tends to exhibit complex or chaotic patterns. A novel technique to reduce and analyze such complex systems is introduced in this work, and its applications to multiple perturbed systems are discussed comprehensively. In this work, a unified approach between the Floquet

The inherent behavior of many real world applications tends to exhibit complex or chaotic patterns. A novel technique to reduce and analyze such complex systems is introduced in this work, and its applications to multiple perturbed systems are discussed comprehensively. In this work, a unified approach between the Floquet theory for time periodic systems and the Poincare theory of Normal Forms is proposed to analyze time varying systems. The proposed unified approach is initially verified for linear time periodic systems with the aid of an intuitive state augmentation and the method of Time Independent Normal Forms (TINF). This approach also resulted in the closed form expressions for the State Transition Matrix (STM) and Lyapunov-Floquet (L-F) transformation for linear time periodic systems. The application of theory towards stability analysis is further demonstrated with the system of Suction Stabilized Floating (SSF) platform. Additionally, multiple control strategies are discussed and implemented to drive an unstable time periodic system to a desired stable point or orbit efficiently and optimally. The computed L-F transformation is further utilized to analyze nonlinear and externally excited systems with deterministic and stochastic time periodic coefficients. The central theme of this work is to verify the extension of Floquet theory towards time varying systems with periodic coefficients comprising of incommensurate frequencies or quasi-periodic systems. As per Floquet theory, a Lyapunov-Perron (L-P) transformation converts a time-varying quasi-periodic system to a time-invariant form. A class of commutative quasi-periodic systems is introduced to demonstrate the proposed theory and its applications analytically. An extension of the proposed unified approach towards analyzing the linear quasi-periodic system is observed to provide good results, computationally less complex and widely applicable for strongly excited systems. The computed L-P transformation using the unified theory is applied to analyze both commutative and non-commutative linear quasi-periodic systems with nonlinear terms and external excitation terms. For highly nonlinear quasi-periodic systems, the implementation of multiple order reduction techniques and their performance comparisons are illustrated in this work. Finally, the robustness and stability analysis of nonlinearly perturbed and stochastically excited quasi-periodic systems are performed using Lyapunov's direct method and Infante's approach.
ContributorsCherangara Subramanian, Susheelkumar (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2021