Matching Items (5)
Filtering by

Clear all filters

Description
In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example cancer vs normal patients the consequences of mis-classication are probably

In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example cancer vs normal patients the consequences of mis-classication are probably more important than any other data type, because the data point could be a cancer patient or the classication decision could help determine what gene might be over expressed and perhaps a cause of cancer. These mis-classications are typically higher in the presence of outlier data points. The aim of this thesis is to develop a maximum margin classier that is suited to address the lack of robustness of discriminant based classiers (like the Support Vector Machine (SVM)) to noise and outliers. The underlying notion is to adopt and develop a natural loss function that is more robust to outliers and more representative of the true loss function of the data. It is demonstrated experimentally that SVM's are indeed susceptible to outliers and that the new classier developed, here coined as Robust-SVM (RSVM), is superior to all studied classier on the synthetic datasets. It is superior to the SVM in both the synthetic and experimental data from biomedical studies and is competent to a classier derived on similar lines when real life data examples are considered.
ContributorsGupta, Sidharth (Author) / Kim, Seungchan (Thesis advisor) / Welfert, Bruno (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2011
150181-Thumbnail Image.png
Description
Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs

Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs and without the need for explicit relearning from scratch. In this thesis, a novel instance transfer technique that adapts a "Cost-sensitive" variation of AdaBoost is presented. The method capitalizes on the theoretical and functional properties of AdaBoost to selectively reuse outdated training instances obtained from a "source" domain to effectively classify unseen instances occurring in a different, but related "target" domain. The algorithm is evaluated on real-world classification problems namely accelerometer based 3D gesture recognition, smart home activity recognition and text categorization. The performance on these datasets is analyzed and evaluated against popular boosting-based instance transfer techniques. In addition, supporting empirical studies, that investigate some of the less explored bottlenecks of boosting based instance transfer methods, are presented, to understand the suitability and effectiveness of this form of knowledge transfer.
ContributorsVenkatesan, Ashok (Author) / Panchanathan, Sethuraman (Thesis advisor) / Li, Baoxin (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2011
157251-Thumbnail Image.png
Description
This thesis presents a family of adaptive curvature methods for gradient-based stochastic optimization. In particular, a general algorithmic framework is introduced along with a practical implementation that yields an efficient, adaptive curvature gradient descent algorithm. To this end, a theoretical and practical link between curvature matrix estimation and shrinkage methods

This thesis presents a family of adaptive curvature methods for gradient-based stochastic optimization. In particular, a general algorithmic framework is introduced along with a practical implementation that yields an efficient, adaptive curvature gradient descent algorithm. To this end, a theoretical and practical link between curvature matrix estimation and shrinkage methods for covariance matrices is established. The use of shrinkage improves estimation accuracy of the curvature matrix when data samples are scarce. This thesis also introduce several insights that result in data- and computation-efficient update equations. Empirical results suggest that the proposed method compares favorably with existing second-order techniques based on the Fisher or Gauss-Newton and with adaptive stochastic gradient descent methods on both supervised and reinforcement learning tasks.
ContributorsBarron, Trevor (Author) / Ben Amor, Heni (Thesis advisor) / He, Jingrui (Committee member) / Levihn, Martin (Committee member) / Arizona State University (Publisher)
Created2019
155030-Thumbnail Image.png
Description
The dawn of Internet of Things (IoT) has opened the opportunity for mainstream adoption of machine learning analytics. However, most research in machine learning has focused on discovery of new algorithms or fine-tuning the performance of existing algorithms. Little exists on the process of taking an algorithm from the lab-environment

The dawn of Internet of Things (IoT) has opened the opportunity for mainstream adoption of machine learning analytics. However, most research in machine learning has focused on discovery of new algorithms or fine-tuning the performance of existing algorithms. Little exists on the process of taking an algorithm from the lab-environment into the real-world, culminating in sustained value. Real-world applications are typically characterized by dynamic non-stationary systems with requirements around feasibility, stability and maintainability. Not much has been done to establish standards around the unique analytics demands of real-world scenarios.

This research explores the problem of the why so few of the published algorithms enter production and furthermore, fewer end up generating sustained value. The dissertation proposes a ‘Design for Deployment’ (DFD) framework to successfully build machine learning analytics so they can be deployed to generate sustained value. The framework emphasizes and elaborates the often neglected but immensely important latter steps of an analytics process: ‘Evaluation’ and ‘Deployment’. A representative evaluation framework is proposed that incorporates the temporal-shifts and dynamism of real-world scenarios. Additionally, the recommended infrastructure allows analytics projects to pivot rapidly when a particular venture does not materialize. Deployment needs and apprehensions of the industry are identified and gaps addressed through a 4-step process for sustainable deployment. Lastly, the need for analytics as a functional area (like finance and IT) is identified to maximize the return on machine-learning deployment.

The framework and process is demonstrated in semiconductor manufacturing – it is highly complex process involving hundreds of optical, electrical, chemical, mechanical, thermal, electrochemical and software processes which makes it a highly dynamic non-stationary system. Due to the 24/7 uptime requirements in manufacturing, high-reliability and fail-safe are a must. Moreover, the ever growing volumes mean that the system must be highly scalable. Lastly, due to the high cost of change, sustained value proposition is a must for any proposed changes. Hence the context is ideal to explore the issues involved. The enterprise use-cases are used to demonstrate the robustness of the framework in addressing challenges encountered in the end-to-end process of productizing machine learning analytics in dynamic read-world scenarios.
ContributorsShahapurkar, Som (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Ameresh, Ashish (Committee member) / He, Jingrui (Committee member) / Tuv, Eugene (Committee member) / Arizona State University (Publisher)
Created2016
155228-Thumbnail Image.png
Description
Imaging genetics is an emerging and promising technique that investigates how genetic variations affect brain development, structure, and function. By exploiting disorder-related neuroimaging phenotypes, this class of studies provides a novel direction to reveal and understand the complex genetic mechanisms. Oftentimes, imaging genetics studies are challenging due to the relatively

Imaging genetics is an emerging and promising technique that investigates how genetic variations affect brain development, structure, and function. By exploiting disorder-related neuroimaging phenotypes, this class of studies provides a novel direction to reveal and understand the complex genetic mechanisms. Oftentimes, imaging genetics studies are challenging due to the relatively small number of subjects but extremely high-dimensionality of both imaging data and genomic data. In this dissertation, I carry on my research on imaging genetics with particular focuses on two tasks---building predictive models between neuroimaging data and genomic data, and identifying disorder-related genetic risk factors through image-based biomarkers. To this end, I consider a suite of structured sparse methods---that can produce interpretable models and are robust to overfitting---for imaging genetics. With carefully-designed sparse-inducing regularizers, different biological priors are incorporated into learning models. More specifically, in the Allen brain image--gene expression study, I adopt an advanced sparse coding approach for image feature extraction and employ a multi-task learning approach for multi-class annotation. Moreover, I propose a label structured-based two-stage learning framework, which utilizes the hierarchical structure among labels, for multi-label annotation. In the Alzheimer's disease neuroimaging initiative (ADNI) imaging genetics study, I employ Lasso together with EDPP (enhanced dual polytope projections) screening rules to fast identify Alzheimer's disease risk SNPs. I also adopt the tree-structured group Lasso with MLFre (multi-layer feature reduction) screening rules to incorporate linkage disequilibrium information into modeling. Moreover, I propose a novel absolute fused Lasso model for ADNI imaging genetics. This method utilizes SNP spatial structure and is robust to the choice of reference alleles of genotype coding. In addition, I propose a two-level structured sparse model that incorporates gene-level networks through a graph penalty into SNP-level model construction. Lastly, I explore a convolutional neural network approach for accurate predicting Alzheimer's disease related imaging phenotypes. Experimental results on real-world imaging genetics applications demonstrate the efficiency and effectiveness of the proposed structured sparse methods.
ContributorsYang, Tao (Author) / Ye, Jieping (Thesis advisor) / Xue, Guoliang (Thesis advisor) / He, Jingrui (Committee member) / Li, Baoxin (Committee member) / Li, Jing (Committee member) / Arizona State University (Publisher)
Created2017