Matching Items (1)
Filtering by

Clear all filters

156924-Thumbnail Image.png
Description
Highly automated vehicles require drivers to remain aware enough to takeover

during critical events. Driver distraction is a key factor that prevents drivers from reacting

adequately, and thus there is need for an alert to help drivers regain situational awareness

and be able to act quickly and successfully should a

Highly automated vehicles require drivers to remain aware enough to takeover

during critical events. Driver distraction is a key factor that prevents drivers from reacting

adequately, and thus there is need for an alert to help drivers regain situational awareness

and be able to act quickly and successfully should a critical event arise. This study

examines two aspects of alerts that could help facilitate driver takeover: mode (auditory

and tactile) and direction (towards and away). Auditory alerts appear to be somewhat

more effective than tactile alerts, though both modes produce significantly faster reaction

times than no alert. Alerts moving towards the driver also appear to be more effective

than alerts moving away from the driver. Future research should examine how

multimodal alerts differ from single mode, and see if higher fidelity alerts influence

takeover times.
ContributorsBrogdon, Michael A (Author) / Gray, Robert (Thesis advisor) / Branaghan, Russell (Committee member) / Chiou, Erin (Committee member) / Arizona State University (Publisher)
Created2018