Matching Items (4)
Filtering by

Clear all filters

190875-Thumbnail Image.png
Description
Mining-influenced water (MIW) is an acidic stream containing a typically acidic pH (e.g., 2.5), sulfate, and dissolved metal(loid)s. MIW has the potential to affect freshwater ecosystems and thus MIW requires strategies put in place for containment and treatment. Lignocellulosic sulfate-reducing biochemical reactors (SRBRs) are considered a cost-effective passive

Mining-influenced water (MIW) is an acidic stream containing a typically acidic pH (e.g., 2.5), sulfate, and dissolved metal(loid)s. MIW has the potential to affect freshwater ecosystems and thus MIW requires strategies put in place for containment and treatment. Lignocellulosic sulfate-reducing biochemical reactors (SRBRs) are considered a cost-effective passive treatment for MIW and have been documented to continuously treat MIW at the field-scale. However, long-term operation (> 1 year) and reliable MIW treatment by SRBRs at mining sites is challenged by the decline in sulfate-reduction, the key treatment mechanism for metal(loid) immobilization. This dissertation addresses operational designs and materials suited to promote sulfate reduction in lignocellulosic SRBRs treating MIW. In this dissertation I demonstrated that lignocellulosic SRBRs containing spent brewing grains and/or sugarcane bagasse can be acclimated in continuous mode at hydraulic retention times (HRTs) of 7-12 d while simultaneously removing 80 ± 20% – 91 ± 3% sulfate and > 98% metal(loid)s. Additionally, I showed that decreasing the HRT to 3 d further yields high metal(loid) removal (97.5 ± 1.3% – 98.8 ± 0.9%). Next, I verified the utility of basic oxygen furnace slag to increase MIW pH in a two-stage treatment involving a slag stage and an SRBR stage containing spent brewing grains or sugarcane bagasse. The slag reactor from the two-stage treatment increased MIW pH from 2.6 ± 0.2 to 12 ± 0.3 requiring its re-combination with fresh MIW to reduce pH to 5.0 ± 1.0 prior to entering the lignocellulosic SRBRs. The lignocellulosic SRBRs from the two-stage treatment successfully continued to remove metal(loid)s, most notably cadmium, copper, and zinc at ≥ 96%. In additions to these outcomes, I performed a metadata analysis of 27 SRBRs employing brewers spent grains, sugarcane bagasse, rice husks and rice bran, or a mixture of walnut shells, woodchips, and alfalfa. I found that sugarcane bagasse SRBRs can remove between 94 and 168 mg metal(loid) kg–1 lignocellulose d–1. In addition, Bacteroidia relative abundances showed a positive correlation with increasing sulfate removal across all 27 SRBRs and are likely essential for the degradation of lignocellulose providing electron donors for sulfate reduction. Clostridia and Gammaproteobacteria were negatively correlated with sulfate reduction in the 27 SRBRs, however SRBRs that received alkalinized MIW had lower relative abundances of Clostridia, Gammaproteobacteria, and methanogenic archaea (known competitors for sulfate-reducing bacteria). Overall, my dissertation provides insight into lignocellulosic materials and operational designs to promote long-term sulfate-reduction in lignocellulosic SRBRs treating MIW.
ContributorsMiranda, Evelyn Monica (Author) / Delgado, Anca G (Thesis advisor) / Santisteban, Leonard (Committee member) / Hamdan, Nasser (Committee member) / Rittmann, Bruce (Committee member) / Arizona State University (Publisher)
Created2023
156559-Thumbnail Image.png
Description
This research explores microbial chain elongation as a pathway for production of complex organic compounds in soils with implication for the carbon cycle. In chain elongation, simple substrates such as ethanol and short chain carboxylates such as acetate can be converted to longer carbon chain carboxylates under anaerobic conditions through

This research explores microbial chain elongation as a pathway for production of complex organic compounds in soils with implication for the carbon cycle. In chain elongation, simple substrates such as ethanol and short chain carboxylates such as acetate can be converted to longer carbon chain carboxylates under anaerobic conditions through cyclic, reverse β oxidation. This pathway elongates the carboxylate by two carbons. The chain elongation process is overall thermodynamically feasible, and microorganisms gain energy through this process. There have been limited insights into the versatility of chain elongating substrates, understanding the chain elongating microbial community, and its importance in sequestering carbon in the soils.

We used ethanol, methanol, butanol, and hydrogen as electron donors and acetate and propionate as electron acceptors to test the occurrence of microbial chain elongation in four soils with different physicochemical properties and microbial communities. Common chain elongation products were the even numbered chains butyrate, caproate, and butanol, the odd numbered carboxylates valerate and heptanoate, along with molecular hydrogen. At a near neutral pH and mesophilic temperature, we observed a stable and sustained production of longer fatty acids along with hydrogen. Microbial community analysis show phylotypes from families such as Clostridiaceae, Bacillaceae, and Ruminococcaceae in all tested conditions. Through chain elongation, the products formed are less biodegradable. They may undergo transformations and end up as organic carbon, decreasing the greenhouse gas emissions, thus, making this process important to study.
ContributorsJoshi, Sayalee (Author) / Delgado, Anca G (Thesis advisor) / Torres, César I (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2018
156029-Thumbnail Image.png
Description
With the application of reverse osmosis (RO) membranes in the wastewater treatment and seawater desalination, the limitation of flux and fouling problems of RO have gained more attention from researchers. Because of the tunable structure and physicochemical properties of nanomaterials, it is a suitable material that can be used to

With the application of reverse osmosis (RO) membranes in the wastewater treatment and seawater desalination, the limitation of flux and fouling problems of RO have gained more attention from researchers. Because of the tunable structure and physicochemical properties of nanomaterials, it is a suitable material that can be used to incorporate with RO to change the membrane performances. Silver is biocidal, which has been used in a variety of consumer products. Recent studies showed that fabricating silver nanoparticles (AgNPs) on membrane surfaces can mitigate the biofouling problem on the membrane. Studies have shown that Ag released from the membrane in the form of either Ag ions or AgNP will accelerate the antimicrobial activity of the membrane. However, the silver release from the membrane will lower the silver loading on the membrane, which will eventually shorten the antimicrobial activity lifetime of the membrane. Therefore, the silver leaching amount is a crucial parameter that needs to be determined for every type of Ag composite membrane.

This study is attempting to compare four different silver leaching test methods, to study the silver leaching potential of the silver impregnated membranes, conducting the advantages and disadvantages of the leaching methods. An In-situ reduction Ag loaded RO membrane was examined in this study. A custom waterjet test was established to create a high-velocity water flow to test the silver leaching from the nanocomposite membrane in a relative extreme environment. The batch leaching test was examined as the most common leaching test method for the silver composite membrane. The cross-flow filtration and dead-end test were also examined to compare the silver leaching amounts.

The silver coated membrane used in this experiment has an initial silver loading of 2.0± 0.51 ug/cm2. The mass balance was conducted for all of the leaching tests. For the batch test, water jet test, and dead-end filtration, the mass balances are all within 100±25%, which is acceptable in this experiment because of the variance of the initial silver loading on the membranes. A bad silver mass balance was observed at cross-flow filtration. Both of AgNP and Ag ions leached in the solution was examined in this experiment. The concentration of total silver leaching into solutions from the four leaching tests are all below the Secondary Drinking Water Standard for silver which is 100 ppb. The cross-flow test is the most aggressive leaching method, which has more than 80% of silver leached from the membrane after 50 hours of the test. The water jet (54 ± 6.9% of silver remaining) can cause higher silver leaching than batch test (85 ± 1.2% of silver remaining) in one-hour, and it can also cause both AgNP and Ag ions leaching from the membrane, which is closer to the leaching condition in the cross-flow test.
ContributorsHan, Bingru (Author) / Westerhoff, Paul (Thesis advisor) / Perreault, Francois (Committee member) / Sinha, Shahnawaz (Committee member) / Arizona State University (Publisher)
Created2017
156062-Thumbnail Image.png
Description
Drinking water filtration using reverse osmosis (RO) membranes effectively removes salts and most other inorganic, organic, and microbial pollutants. RO technologies are utilized at both the municipal and residential scale. The formation of biofilms on RO membranes reduces water flux and increases energy consumption. The research conducted for this thesis

Drinking water filtration using reverse osmosis (RO) membranes effectively removes salts and most other inorganic, organic, and microbial pollutants. RO technologies are utilized at both the municipal and residential scale. The formation of biofilms on RO membranes reduces water flux and increases energy consumption. The research conducted for this thesis involves In-Situ coating of silver, a known biocide, on the surface of RO membranes. This research was adapted from a protocol developed for coating flat sheet membranes with silver nanoparticles, and scaled up into spiral-wound membranes that are commonly used at the residential scale in point-of-use (POU) filtration systems. Performance analyses of the silver-coated spiral-wound were conducted in a mobile drinking water treatment system fitted with two POU units for comparison. Five month-long analyses were performed, including a deployment of the mobile system. In addition to flux, salt rejection, and other water quality analyses, additional membrane characterization tests were conducted on pristine and silver-coated membranes.

For flat sheet membranes coated with silver, the surface charge remained negative and contact angle remained below 90. Scaling up to spiral-wound RO membrane configuration was successful, with an average silver-loading of 1.93 g-Ag/cm2. Results showed the flux of water through the membrane ranged from 8 to 13 liters/m2*hr. (LMH) operating at 25% recovery during long-term of operation. The flux was initially decreased due to the silver coating, but no statistically significant differences were observed after 14 days of operation (P < 0.05). The salt rejection was also not effected due to the silver coating (P < 0.05). While 98% of silver was released during long-term studies, the silver release from the spiral-wound membrane was consistently below the secondary MCL of 100 ppb established by the EPA, and was consistently below 5 ppb after two hours of operation. Microbial assays in the form of heterotrophic plate counts suggested there was no statistically significant difference in the prevention of biofouling formation due to the silver coating (P < 0.05). In addition to performance tests and membrane characterizations, a remote data acquisition system was configured to remotely monitor performance and water quality parameters in the mobile system.
ContributorsZimmerman, Sean (Author) / Westerhoff, Paul K (Thesis advisor) / Sinha, Shahnawaz (Committee member) / Perreault, Francois (Committee member) / Arizona State University (Publisher)
Created2017