Matching Items (10)
152012-Thumbnail Image.png
Description
As renewable energy becomes more prevalent in transmission and distribution systems, it is vital to understand the uncertainty and variability that accompany these resources. Microgrids have the potential to mitigate the effects of resource uncertainty. With the ability to exist in either an islanded mode or maintain connections with the

As renewable energy becomes more prevalent in transmission and distribution systems, it is vital to understand the uncertainty and variability that accompany these resources. Microgrids have the potential to mitigate the effects of resource uncertainty. With the ability to exist in either an islanded mode or maintain connections with the main-grid, a microgrid can increase reliability, defer T&D; infrastructure and effectively utilize demand response. This study presents a co-optimization framework for a microgrid with solar photovoltaic generation, emergency generation, and transmission switching. Today unit commitment models ensure reliability with deterministic criteria, which are either insufficient to ensure reliability or can degrade economic efficiency for a microgrid that uses a large penetration of variable renewable resources. A stochastic mixed integer linear program for day-ahead unit commitment is proposed to account for uncertainty inherent in PV generation. The model incorporates the ability to trade energy and ancillary services with the main-grid, including the designation of firm and non-firm imports, which captures the ability to allow for reserve sharing between the two systems. In order to manage the computational complexities, a Benders' decomposition approach is utilized. The commitment schedule was validated with solar scenario analysis, i.e., Monte-Carlo simulations are conducted to test the proposed dispatch solution. For this test case, there were few deviations to power imports, 0.007% of solar was curtailed, no load shedding occurred in the main-grid, and 1.70% load shedding occurred in the microgrid.
ContributorsHytowitz, Robin Broder (Author) / Hedman, Kory W (Thesis advisor) / Heydt, Gerald T (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
151100-Thumbnail Image.png
Description
The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC

The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC compressor that operates a conventional HVAC system paired with a second evaporator submerged within a thermal storage tank. The thermal storage is a 0.284m3 or 75 gallon freezer filled with Cryogel balls, submerged in a weak glycol solution. It is paired with its own separate air handler, circulating the glycol solution. The refrigerant flow is controlled by solenoid valves that are electrically connected to a high and low temperature thermostat. During daylight hours, the PV modules run the DC compressor. The refrigerant flow is directed to the conventional HVAC air handler when cooling is needed. Once the desired room temperature is met, refrigerant flow is diverted to the thermal storage, storing excess PV power. During peak energy demand hours, the system uses only small amounts of grid power to pump the glycol solution through the air handler (note the compressor is off), allowing for money and energy savings. The conventional HVAC unit can be scaled down, since during times of large cooling demands the glycol air handler can be operated in parallel with the conventional HVAC unit. Four major test scenarios were drawn up in order to fully comprehend the performance characteristics of the HACS. Upon initial running of the system, ice was produced and the thermal storage was charged. A simple test run consisting of discharging the thermal storage, initially ~¼ frozen, was performed. The glycol air handler ran for 6 hours and the initial cooling power was 4.5 kW. This initial test was significant, since greater than 3.5 kW of cooling power was produced for 3 hours, thus demonstrating the concept of energy storage and recovery.
ContributorsPeyton-Levine, Tobin (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2012
136129-Thumbnail Image.png
Description
As part of a United States-Australian Solar Energy Collaboration on a Micro Urban Solar Integrated Concentrator project, the purpose of the research was to design and build a bench-top apparatus of a solar power concentrator thermal storage unit. This prototype would serve to be a test apparatus for testing

As part of a United States-Australian Solar Energy Collaboration on a Micro Urban Solar Integrated Concentrator project, the purpose of the research was to design and build a bench-top apparatus of a solar power concentrator thermal storage unit. This prototype would serve to be a test apparatus for testing multiple thermal storage mediums and heat transfer fluids for verification and optimization of the larger system. The initial temperature range for the system to test a wide variety of thermal storage mediums was 100°C to 400°C. As for the thermal storage volume it was decided that the team would need to test volumes of about 100 mL. These design parameters later changed to a smaller range for the initial prototype apparatus. This temperature range was decided to be 210°C to 240°C using tin as a phase change material (PCM). It was also decided a low temperature (<100°C) test using paraffin as the PCM would be beneficial for troubleshooting purposes.
ContributorsLee, William John (Author) / Phelan, Patrick (Thesis director) / Wang, Robert (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of International Letters and Cultures (Contributor)
Created2015-05
137819-Thumbnail Image.png
Description
The majority of the 52 photovoltaic installations at ASU are governed by power purchase agreements (PPA) that set a fixed per kilowatt-hour rate at which ASU buys power from the system owner over the period of 15-20 years. PPAs require accurate predictions of the system output to determine the financial

The majority of the 52 photovoltaic installations at ASU are governed by power purchase agreements (PPA) that set a fixed per kilowatt-hour rate at which ASU buys power from the system owner over the period of 15-20 years. PPAs require accurate predictions of the system output to determine the financial viability of the system installations as well as the purchase price. The research was conducted using PPAs and historical solar power production data from the ASU's Energy Information System (EIS). The results indicate that most PPAs slightly underestimate the annual energy yield. However, the modeled power output from PVsyst indicates that higher energy outputs are possible with better system monitoring.
ContributorsVulic, Natasa (Author) / Bowden, Stuart (Thesis director) / Bryan, Harvey (Committee member) / Sharma, Vivek (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
137699-Thumbnail Image.png
DescriptionExploring solar cell model alternatives using electrochemically deposited dendrites as a form of current collection to increase efficiency and top electrode transparency.
ContributorsKrawczyk, Joseph Robert (Author) / Kozicki, Michael (Thesis director) / Roedel, Ronald (Committee member) / Gonzalez Velo, Yago (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
135896-Thumbnail Image.png
Description
The purpose of the solar powered quadcopter is to join together the growing technologies of photovoltaics and quadcopters, creating a single unified device where the technologies harmonize to produce a new product with abilities beyond those of a traditional battery powered drone. Specifically, the goal is to take the battery-only

The purpose of the solar powered quadcopter is to join together the growing technologies of photovoltaics and quadcopters, creating a single unified device where the technologies harmonize to produce a new product with abilities beyond those of a traditional battery powered drone. Specifically, the goal is to take the battery-only flight time of a quadcopter loaded with a solar array and increase that flight time by 33% with additional power provided by solar cells. The major concepts explored throughout this project are quadcopter functionality and capability and solar cell power production. In order to combine these technologies, the solar power and quadcopter components were developed and analyzed individually before connecting the solar array to the quadcopter circuit and testing the design as a whole. Several solar copter models were initially developed, resulting in multiple unique quadcopter and solar cell array designs which underwent preliminary testing before settling on a finalized design which proved to be the most effective and underwent final timed flight tests. Results of these tests are showing that the technologies complement each other as anticipated and highlight promising results for future development in this area, in particular the development of a drone running on solar power alone. Applications for a product such as this are very promising in many fields, including the industries of power, defense, consumer goods and services, entertainment, marketing, and medical. Also, becoming a more popular device for UAV hobbyists, such developments would be very appealing for leisure flying and personal photography purposes as well.
ContributorsMartin, Heather Catrina (Author) / Bowden, Stuart (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
148172-Thumbnail Image.png
Description

Increasing reliable produce farming and clean energy generation in the southwestern United States will be important for increasing the food supply for a growing population and reducing reliance on fossil fuels to generate energy. Combining greenhouses with photovoltaic (PV) films can allow both food and electric power to be produced

Increasing reliable produce farming and clean energy generation in the southwestern United States will be important for increasing the food supply for a growing population and reducing reliance on fossil fuels to generate energy. Combining greenhouses with photovoltaic (PV) films can allow both food and electric power to be produced simultaneously. This study tests if the combination of semi-transparent PV films and a transmission control layer can generate energy and spectrally control the transmission of light into a greenhouse. Testing the layer combinations in a variety of real-world conditions, it was shown that light can be spectrally controlled in a greenhouse. The transmission was overall able to be controlled by an average of 11.8% across the spectrum of sunlight, with each semi-transparent PV film able to spectrally select transmission of light in both the visible and near-infrared light wavelength. The combination of layers was also able to generate energy at an average efficiency of 8.71% across all panels and testing conditions. The most efficient PV film was the blue dyed, at 9.12%. This study also suggests additional improvements for this project, including the removal of the red PV film due to inefficiencies in spectral selection and additional tests with new materials to optimize plant growth and energy generation in a variety of light conditions.

ContributorsGunderson, Evan (Author) / Phelan, Patrick (Thesis director) / Villalobos, Rene (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This honors thesis report aims to propose a sustainable long-term solution for providing off-grid solar energy to rural communities that lack the necessary grid energy infrastructure. With this in mind, we aim to establish the framework and documentation for people to be able to build and maintain their own off-grid

This honors thesis report aims to propose a sustainable long-term solution for providing off-grid solar energy to rural communities that lack the necessary grid energy infrastructure. With this in mind, we aim to establish the framework and documentation for people to be able to build and maintain their own off-grid solar power systems. Due to recent incentives for clean energy both nationwide and statewide, the team will discuss the current renewable energy market and the future growth potential of residential solar energy systems, which includes off-grid or remote solar. This discussion will include comparing pre-built solar systems currently offered for purchase against the proposed design outlined in this report. Notably, the outlined design has been made with an emphasis on system sustainability, low initial cost, reliability, ease of manufacturing/maintenance, and material selection. Lastly, the team will discuss the project’s approach to documentation with a user manual draft to ensure the system's long-term sustainability and troubleshooting. Although the efforts of this project have increased over time, this project remains active within the ASU EWB chapter, meaning that not all aspects described throughout this report are fully complete as future work will continue to optimize and improve the system. A rural community in northern Arizona, will be used as an example to understand a rural community's needs for designing a solar panel system that provides sufficient energy for a single household. The project was completed in collaboration with Arizona State University’s Engineering Projects In Community Service (EPICS) program and Engineers Without Borders (EWB) chapter. Both these organizations aim to connect ASU students to the professional mentors and resources they need to design and implement low-cost, small-scale, easily replicated, and sustainable engineering projects.

ContributorsPham, Brandon (Author) / Beltran, Salvador (Co-author) / Haq, Emmen (Co-author) / Sosa, Jorge (Co-author) / Schoepf, Jared (Thesis director) / Wong, Marnie (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-05
158072-Thumbnail Image.png
Description
Climate change is affecting power generation globally. Increase in the ambient air

temperature due to the emission of greenhouse gases, caused mainly by burning of fossil fuels, is the most prominent reason for this effect. This increase in the temperature along with the changing precipitation levels has led to the melting

Climate change is affecting power generation globally. Increase in the ambient air

temperature due to the emission of greenhouse gases, caused mainly by burning of fossil fuels, is the most prominent reason for this effect. This increase in the temperature along with the changing precipitation levels has led to the melting of the snow packs and increase in the evaporation levels, thus affecting hydropower. The hydropower in the United States might increase by 8%-60% due to Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 scenarios respectively by 2050. Wind power generation is mainly affected by the change in the wind speed and solar power generation is mainly affected by the increase in the ambient air temperature, changes in precipitation and solar radiation. Solar power output reduces by approximately a total of 2.5 billion kilowatt- hour (kWh) by 2050 for an increase in ambient air temperature of 1 degree Celsius. Increase in the ambient air and water temperature mainly affect the thermal power generation. An increase in the temperature as per the RCP 4.5 and RCP 8.5 climate change scenarios could decrease the total thermal power generation in the United States by an average of 26 billion kWh and a possible income loss of around 1.5 billion dollars. This thesis discusses the various effects of climate change on each of these four power plant types.
ContributorsPenmetsa, Vikramaditya (Author) / Holbert, Keith E. (Thesis advisor) / Hedman, Mojdeh (Committee member) / Wu, Meng (Committee member) / Arizona State University (Publisher)
Created2020
Description
Space-based solar power is a renewable energy that is an alternative to all other forms of energy production. It takes on a new approach that pushes energy production off-world. Energy is harnessed and beamed down to a ground receiver via microwaves which is then sent to the grid and distributed

Space-based solar power is a renewable energy that is an alternative to all other forms of energy production. It takes on a new approach that pushes energy production off-world. Energy is harnessed and beamed down to a ground receiver via microwaves which is then sent to the grid and distributed to people across the country, and even globe. While the technology is new and still in the research and development stages, the ability is there. An economic analysis of the various technology yields levelized costs of energy comparable to current prices—under $.10/kWh. The markets and profits for this type of technology are abundant, ranging from commercial to military uses, with profits in the millions to billions of dollars. The environmental impacts are low compared to current energy production methods. The potential is great, the technology is close, and the future is near.
ContributorsFerrin, Zane (Author) / Parker, Nathan (Thesis director) / Tetreault, Colin (Committee member) / Department of Economics (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05