Matching Items (16)
Filtering by

Clear all filters

149601-Thumbnail Image.png
Description
It has been suggested that directed forgetting (DF) in the item-method paradigm results from selective rehearsal of R items and passive decay of F items. However, recent evidence suggested that the passive decay explanation is insufficient. The current experiments examined two theories of DF that assume an active forgetting process:

It has been suggested that directed forgetting (DF) in the item-method paradigm results from selective rehearsal of R items and passive decay of F items. However, recent evidence suggested that the passive decay explanation is insufficient. The current experiments examined two theories of DF that assume an active forgetting process: (1) attentional inhibition and (2) tagging and selective search (TSS). Across three experiments, the central tenets of these theories were evaluated. Experiment 1 included encoding manipulations in an attempt to distinguish between these competing theories, but the results were inconclusive. Experiments 2 and 3 examined the theories separately. The results from Experiment 2 supported a representation suppression account of attentional inhibition, while the evidence from Experiment 3 suggested that TSS was not a viable mechanism for DF. Overall, the results provide additional evidence that forgetting is due to an active process, and suggest this process may act to suppress the representations of F items.
ContributorsHansen, Whitney Anne (Author) / Goldinger, Stephen D. (Thesis advisor) / Azuma, Tamiko (Committee member) / Brewer, Gene (Committee member) / Homa, Donald (Committee member) / Arizona State University (Publisher)
Created2011
131093-Thumbnail Image.png
Description
This study is a replication of the investigation titled “Pupillary correlates of lapses of sustained attention,” which examined if measuring pupil diameters was an effective way of assessing one’s level of attention (Unsworth and Robison, 2016). The original study had thirty-nine participants undergo 160 trials of a simple reaction time

This study is a replication of the investigation titled “Pupillary correlates of lapses of sustained attention,” which examined if measuring pupil diameters was an effective way of assessing one’s level of attention (Unsworth and Robison, 2016). The original study had thirty-nine participants undergo 160 trials of a simple reaction time task, as well as responding to thought probes to self-report how focused they are on the task. The current study would keep similar methods, but introduce minute-long breaks, group spaced throughout the investigation. The prediction of this study is that the pupillary responses will decrease until the break, then the pupil diameter would return to baseline. This would indicate that the individual would have renewed his/her focus after taking a break.
ContributorsBrown, Faith (Author) / Brewer, Gene (Thesis director) / Robinson, Mathew (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
171788-Thumbnail Image.png
Description
The ability to preferentially encode and later retrieve valuable information amidst a plethora of miscellaneous information is an essential aspect of human memory. Several hypotheses have been suggested to explain the enhanced ability to successfully encode high value items. These include the hypothesis that the prefrontal executive control processes are

The ability to preferentially encode and later retrieve valuable information amidst a plethora of miscellaneous information is an essential aspect of human memory. Several hypotheses have been suggested to explain the enhanced ability to successfully encode high value items. These include the hypothesis that the prefrontal executive control processes are engaged for valuable information, producing elaborative rehearsal strategy. Another hypothesis is that greater attentional resources are allocated to higher value items via the reward driven mid-brain dopamine systems interacting with hippocampal and cortical areas to produce enhanced memory. To further understand the neural mechanisms of value on memory, electroencephalogram data under a value-directed remembering paradigm (VDR) was analyzed for oscillatory activity. During the task, participants encoded words assigned a different point value with the instruction to maximize the point value of recognized words during test. To analyze frequency activity during encoding, conditions of subsequent memory as subjective responses of either recollection (i.e., “remember”) and familiarity (i.e., “know”) were assessed. A possible way to observe the allocation of attention resources in the brain are alpha oscillations (8-15 Hz) which are thought to underlie this process. Participants demonstrated superior memory for high versus low value point items. Following the hypothesis that there is a greater recruitment of attentional resources for high value information, alpha oscillatory power in the occipital/temporal cortex displayed significantly more desynchronization for high value compared to low value conditions during encoding. As well, successful retrieval compared with unsuccessful retrieval and subsequent “remember” or “know” conditions resulted in a qualitatively different, more sustained desynchronization of alpha and other unanticipated frequency band oscillations during encoding that are discussed. Taken together, these findings support previous research for alpha-band desynchronization during encoding items of value into memory and potentially open paths to decouple value and memory driven processes.
ContributorsWilliams, Cole (Author) / Brewer, Gene (Thesis advisor) / McClure, Samuel (Committee member) / Blais, Chris (Committee member) / Arizona State University (Publisher)
Created2022
171608-Thumbnail Image.png
Description
Recent findings in human interactions with complex objects, objects with unpredictable interaction dynamics, revealed predictability as an important factor when determining effective control strategies. The current study extended these findings by examining the role of predictability in the selection of control strategies in two scenarios: during initial interactions with a

Recent findings in human interactions with complex objects, objects with unpredictable interaction dynamics, revealed predictability as an important factor when determining effective control strategies. The current study extended these findings by examining the role of predictability in the selection of control strategies in two scenarios: during initial interactions with a novel, complex object, and when intentional constraints are imposed. In Experiment 1, methods with which people can identify and improve their control strategy during initial interactions with a complex object were examined. Participants actively restricted their movements at first to simplify the object’s complex behavior, then gradually adjusted movements to improve the system’s predictability. In Experiment 2, predictability of participants’ control strategies was monitored when the intention to act was changed to prioritize speed over stability. Even when incentivized to seek alternative strategies, people still prioritized predictability, and would compensate for the loss of predictability. These experiments furthered understanding of the motor control processes as a whole and may reveal important implications when generalized to other domains that also interact with complex systems.
ContributorsNguyen, Tri Duc (Author) / Amazeen, Eric (Thesis advisor) / Glenberg, Arthur (Committee member) / Amazeen, Polemnia G (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2022
171743-Thumbnail Image.png
Description
The present study aimed to compare brain activity changes related to proactive and reactive control strategies in patients with Parkinson’s disease during “On” levodopa and “Off” levodopa conditions. The study consisted of two participants who had received a prior diagnosis of Parkinson’s Disease. The participants completed AX-CPT task as a

The present study aimed to compare brain activity changes related to proactive and reactive control strategies in patients with Parkinson’s disease during “On” levodopa and “Off” levodopa conditions. The study consisted of two participants who had received a prior diagnosis of Parkinson’s Disease. The participants completed AX-CPT task as a measure of attention control in two sessions: a) “On Levodopa” and b) “Off Levodopa” while they were in the fMRI scanner. Prior to the analysis, the T1- weighted anatomical scan images and the BOLD multiband functional images of both the participants were BIDS (Brain Imaging Data Structure) validated and preprocessed using the standard FMRIPrep pipeline. The imaging data was then analyzed using SPM12 (Statistical parametric mapping) software. Individual-level analysis of the imaging data was conducted by creating General Linear models for both the participants on “ON” and “OFF” levodopa conditions. The BOLD responses were compared using AY>BY and BX > BY contrasts. Where BX >, BY contrast, measured BOLD activity related to reactive control strategy and AY> BY contrast measured BOLD activity related to the proactive control strategy. It was observed that participants tended towards reactive control strategy in both “On” and “Off” levodopa conditions.
ContributorsDatta, Kalyani (Author) / Brewer, Gene (Thesis advisor) / Braden, B. Blair (Committee member) / Peterson, Daniel (Committee member) / Arizona State University (Publisher)
Created2022
171807-Thumbnail Image.png
Description
Statistical word learning (SWL) has been proposed and tested as a powerful mechanism for word learning under referential ambiguity. Learners are adept at resolving word-referent ambiguity by calculating the co-occurrences between words and referents across ambiguous scenes. Despite the generalizability of such capacity, it is less clear which underlying factors

Statistical word learning (SWL) has been proposed and tested as a powerful mechanism for word learning under referential ambiguity. Learners are adept at resolving word-referent ambiguity by calculating the co-occurrences between words and referents across ambiguous scenes. Despite the generalizability of such capacity, it is less clear which underlying factors may play a role in SWL, such as learners’ language experience and individual differences of working memory. The current study therefore asked two questions: 1) How do learners of different language experience (monolinguals and bilinguals) approach SWL of different mapping types–when each referent has one name (1:1 mapping) or two names (2:1 mapping)? and 2) How do working memory capacities (spatial and phonological) play a role in SWL by mapping type? In this pre-registered study (OSF: https://osf.io/mte8s/), 69 English monolinguals and 88 bilinguals completed two SWL tasks (1:1 and 2:1 mapping), a symmetry span task indexing spatial working memory, and a listening span task indexing phonological working memory. Results showed no differences between monolinguals and bilinguals in SWL of both mapping types. However, spatial and phonological working memory positively predicted SWL regardless of language experience, but only in 1:1 mapping. The findings show a dissociation of working memory’s role in SWL of different mapping types. The study proposes a novel insight into a theoretical debate underlying statistical learning mechanisms: learners may adopt more explicit processes (i.e. hypothesis-testing) during 1:1 mapping but implicit processes (i.e. associative learning) during 2:1 mapping. Future studies can locate memory-related brain areas during SWL to test out the proposal.
ContributorsLi, Ye (Author) / Benitez, Viridiana (Thesis advisor) / Goldinger, Stephen (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2022
171684-Thumbnail Image.png
Description
Dopamine neurons are essential for several aspects of cognition. Several decades of Parkinson’s Disease (PD) research have revealed that the deterioration of these neurons is associated with a wide range of cognitive deficits such as attention, motor coordination, and memory. The diversity of these deficits is a demonstration of the

Dopamine neurons are essential for several aspects of cognition. Several decades of Parkinson’s Disease (PD) research have revealed that the deterioration of these neurons is associated with a wide range of cognitive deficits such as attention, motor coordination, and memory. The diversity of these deficits is a demonstration of the structural and functional heterogeneity within the dopaminergic system; projections from the substantia nigra and the ventral tegmental area to striatum have targets in the frontal and medial temporal cortices. It is known that prospective memory is negatively affected by PD, but whether the deficits originate from pathways that support attention, retrospective memory, working memory, and/or motor control has not yet been determined. For the current study, the goal is to estimate the structural integrity of these pathways by using diffusion-imaging analysis to then correlate these estimates with prospective memory performance within a standard event-based task. Two participant data sets were reported in the current study and compared with the global and target fractional anisotropy as well as seed connectivity. All the results reported here are preliminary.
ContributorsTerry, Jade (Author) / Brewer, Gene (Thesis advisor) / Ofori, Edward (Thesis advisor) / McClure, Samuel (Committee member) / Arizona State University (Publisher)
Created2022
189256-Thumbnail Image.png
Description
Past research on knowledge has differentiated between dimensions of knowledge, for example amount or coherence. This dissertation introduces a novel dimension of knowledge, the Motivational Utility of Knowledge (MUK), that is based on hierarchies of human needs (e.g., physical safety, status/esteem, actualization, reproduction). The effects of MUK are tested in

Past research on knowledge has differentiated between dimensions of knowledge, for example amount or coherence. This dissertation introduces a novel dimension of knowledge, the Motivational Utility of Knowledge (MUK), that is based on hierarchies of human needs (e.g., physical safety, status/esteem, actualization, reproduction). The effects of MUK are tested in a set of four studies on the topic of houselessness. All four studies used the same dataset. Adults in the United States (N = 190) were recruited from an online survey platform and paid for participation. They were first asked about their conceptions of houselessness. Next, they read a set of four texts arguing different views of houselessness, and administered a comprehension test, an emotion while reading test, and asked if the text conflicted with their beliefs. They were then reassessed on their conceptions and administered the MUK scale. Finally, they were given a demographics questionnaire, including questions about their personal experience with houselessness, and were administered a general prior knowledge test and a vocabulary knowledge test. Study 1 examined MUK as a construct and assessed the factor structure of the scale. The analyses showed that the subscales of MUK loaded onto a single factor – overall value of houselessness knowledge. Study 2 situated MUK within the domain of conceptual change. The results demonstrated that participants’ conceptions of houselessness were related to MUK, and that their propensity to engage in conceptual change depended on MUK. Study 3 situated MUK within the domain of text comprehension research and demonstrated that the text-belief consistency effect is enhanced when participants have high MUK. Finally, Study 4 examined MUK as a mediator between conceptions and comprehension and examined the role of MUK in predicting negative emotions. Overall, the findings suggest that MUK plays a role in conceptual change and text comprehension such that participants with high MUK are less likely to revise their knowledge and have worse comprehension when the text conflicts with their beliefs. In addition, MUK may predict emotions while reading about controversial topics, as participants with high MUK were more likely to report negative emotions while reading.
ContributorsWatanabe, Micah (Author) / McNamara, Danielle S. (Thesis advisor) / Brewer, Gene (Committee member) / Firetto, Carla (Committee member) / Roscoe, Rod (Committee member) / Arizona State University (Publisher)
Created2023
189268-Thumbnail Image.png
Description
Behavioral, electrophysiological, and neuroimaging evidence has demonstrated that multiple object tracking (MOT) tasks draw upon visual perception, attention, and working memory cognitive processes. Functional neuroimaging studies identified the middle temporal visual area (MT+/V5) as one of several brain regions associated with MOT in humans. MT+/V5 is thought to be responsible

Behavioral, electrophysiological, and neuroimaging evidence has demonstrated that multiple object tracking (MOT) tasks draw upon visual perception, attention, and working memory cognitive processes. Functional neuroimaging studies identified the middle temporal visual area (MT+/V5) as one of several brain regions associated with MOT in humans. MT+/V5 is thought to be responsible for processing motion from visual information, regulating smooth pursuit eye movements, and encoding memory for motion. However, it is unclear how MT+/V5 interacts with attention and working memory performance processes during MOT. To investigate this question, the right MT+/V5 region was identified in 14 neurotypical subjects using structural magnetic resonance imaging (sMRI). The right MT+/V5 was stimulated using intermittent theta-burst stimulation (iTBS), continuous theta-burst stimulation (cTBS), and sham transcranial magnetic stimulation (TMS) using a within-subjects design. Average MOT performance was measured before and 5-min, 30-min, and 60-min after each stimulation protocol. There was no significant difference in average MOT performance across time, regardless of the stimulation condition.
ContributorsAlucard, Myles (Author) / Duran, Nicholas (Thesis advisor, Committee member) / Brewer, Gene (Thesis advisor, Committee member) / Burleson, Mary (Committee member) / Arizona State University (Publisher)
Created2023
153814-Thumbnail Image.png
Description
The current work investigated the emergence of leader-follower roles during social motor coordination. Previous research has presumed a leader during coordination assumes a spatiotemporally advanced position (e.g., relative phase lead). While intuitive, this definition discounts what role-taking implies. Leading and following is defined as one person (or limb) having a

The current work investigated the emergence of leader-follower roles during social motor coordination. Previous research has presumed a leader during coordination assumes a spatiotemporally advanced position (e.g., relative phase lead). While intuitive, this definition discounts what role-taking implies. Leading and following is defined as one person (or limb) having a larger influence on the motor state changes of another; the coupling is asymmetric. Three experiments demonstrated asymmetric coupling effects emerge when task or biomechanical asymmetries are imputed between actors. Participants coordinated in-phase (Ф =0o) swinging of handheld pendulums, which differed in their uncoupled eigenfrequencies (frequency detuning). Coupling effects were recovered through phase-amplitude modeling. Experiment 1 examined leader-follower coupling during a bidirectional task. Experiment 2 employed an additional coupling asymmetry by assigning an explicit leader and follower. Both experiment 1 and 2 demonstrated asymmetric coupling effects with increased detuning. In experiment 2, though, the explicit follower exhibited a phase lead in nearly all conditions. These results confirm that coupling direction was not determined strictly by relative phasing. A third experiment examined the question raised by the previous two, which is how could someone follow from ahead (i.e., phase lead in experiment 2). This was tested using a combination of frequency detuning and amplitude asymmetry requirements (e.g., 1:1 or 1:2 & 2:1). Results demonstrated larger amplitude movements drove the coupling towards the person with the smaller amplitude; small amplitude movements exhibited a phase lead, despite being a follower in coupling terms. These results suggest leader-follower coupling is a general property of social motor coordination. Predicting when such coupling effects occur is emphasized by the stability reducing effects of coordinating asymmetric components. Generally, the implication is role-taking is an emergent strategy of dividing up coordination stabilizing efforts unequally between actors (or limbs).
ContributorsFine, Justin (Author) / Amazeen, Eric L. (Thesis advisor) / Amazeen, Polemnia G. (Committee member) / Brewer, Gene (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2015