Matching Items (5)
Filtering by

Clear all filters

152888-Thumbnail Image.png
Description
Owner organizations in the architecture, engineering, and construction (AEC) industry are presented with a wide variety of project delivery approaches. Implementation of these approaches, while enticing due to their potential to save money, reduce schedule delays, or improve quality, is extremely difficult to accomplish and requires a concerted change management

Owner organizations in the architecture, engineering, and construction (AEC) industry are presented with a wide variety of project delivery approaches. Implementation of these approaches, while enticing due to their potential to save money, reduce schedule delays, or improve quality, is extremely difficult to accomplish and requires a concerted change management effort. Research in the field of organizational behavior cautions that perhaps more than half of all organizational change efforts fail to accomplish their intended objectives. This study utilizes an action research approach to analyze change message delivery within owner organizations, model owner project team readiness and adoption of change, and identify the most frequently encountered types of resistance from lead project members. The analysis methodology included Spearman's rank order correlation, variable selection testing via three methods of hierarchical linear regression, relative weight analysis, and one-way ANOVA. Key findings from this study include recommendations for communicating the change message within owner organizations, empirical validation of critical predictors for change readiness and change adoption among project teams, and identification of the most frequently encountered resistive behaviors within change implementation in the AEC industry. A key contribution of this research is the recommendation of change management strategies for use by change practitioners.
ContributorsLines, Brian (Author) / Sullivan, Kenneth (Thesis advisor) / Wiezel, Avi (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2014
153252-Thumbnail Image.png
Description
Effective collection and dissemination of project information, including best practices, help increase the likelihood of project performance and are vital to organizations in the architecture-engineering-construction (AEC) industry. Best practices can help improve project performance, yet these practices are not universally implemented and used in the industry, due to the following:

Effective collection and dissemination of project information, including best practices, help increase the likelihood of project performance and are vital to organizations in the architecture-engineering-construction (AEC) industry. Best practices can help improve project performance, yet these practices are not universally implemented and used in the industry, due to the following: 1) not all practices are applicable to every project or organization, 2) knowledge lost in organizational turnover which leads to inconsistent collection and implementation of best practices and 3) the lack of standardized processes for best practice management in an organization.

This research, sponsored by National Academy of Construction, the Construction Industry Institute and Arizona State University, used structured interviews, a Delphi study and focus groups to explore: 1) potential benefit and industry interest in an open repository of best practices and 2) important elements of a framework/model that guides the creation, management and sustainment of an open repository of best practices.

This dissertation presents findings specifically exploring the term "Practices for Excellence", its definition, elements that hinder implementation, the potential value of an open online repository for such practices and a model to develop an open repository.
ContributorsBosfield, Roberta Patrice (Author) / Gibson, Edd (Thesis advisor) / Chester, Mikhail (Committee member) / Parrish, Kristen (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2014
Description
Facilities Management (FM) around the globe at different companies in different industries are often forced to make difficult decisions on whether or not to transition a workplace environment and how to decide what factors of a workplace environment can benefit or hinder a company's productivity. The data and research presented

Facilities Management (FM) around the globe at different companies in different industries are often forced to make difficult decisions on whether or not to transition a workplace environment and how to decide what factors of a workplace environment can benefit or hinder a company's productivity. The data and research presented within this paper are targeted at aiding and educating FM in determining what factors to consider in a workplace transition to an open-seating design and validate the importance of recognizing how these factors impact the productivity of the individual and the organization. Data contained in this paper was gathered through two different survey samples: 1) a semiconductor company that transitioned its employees from cubicles and offices to an open-seating environment; and 2) a general study open to professionals and their experiences and opinions on workplace environments. This data was used to validate or disprove the views on open-seating workspace held by the FM industry today. Data on the topic of how employees react to being transitioned to open-seating environments and looking at the breakdown of the results between engineers and non-engineers is examined within this research. Also covered within the research is data on transitions to other seating environments outside of open-seating concepts to evaluate and compare transition types. Lastly, data was gathered and discussed on the amount of time needed to adapt after a transition and what environment types were linked to being the most productive. This research provides insight on workplace environments and transitions and how they have an impact on productivity and can be used in the decision process when considering transitioning environments.
ContributorsThalin, William (Author) / Sullivan, Kenneth (Thesis advisor) / Smithwick, Jake (Committee member) / Stone, Brian (Committee member) / Arizona State University (Publisher)
Created2017
158781-Thumbnail Image.png
Description
ABSTRACT
Academic literature and industry benchmarking reports were reviewed to determine the way facilities benchmarking reports were perceived in the healthcare industry. Interviews were conducted through a Delphi panel of industry professionals who met experience and other credential requirements. Two separate rounds of interviewing were conducted

ABSTRACT
Academic literature and industry benchmarking reports were reviewed to determine the way facilities benchmarking reports were perceived in the healthcare industry. Interviews were conducted through a Delphi panel of industry professionals who met experience and other credential requirements. Two separate rounds of interviewing were conducted where each candidate was asked the same questions to determine the current views of benchmarking reports and associated data in the healthcare industry. The questions asked in the second round were developed from the answers to the first-round questions. The research showed the panel preferred changes in the data collection methods as well as changes in the way the data is presented. The need for these changes was unanimous among the members of the panel. The main recommendations among the group were:
1. An interactive method such as a member portal with the ability to customize, run scenarios, and save data is the preferred method.
2. Facilities Management (FM) teams are often not included in the data collection of the benchmark reports. Including FM groups would allow more accuracy and more detailed data resulting in more accurate and in-depth reports.
3. More consistency and “apples to apples” comparisons need to be provided in the reports. More categories and variables need to be added to the reports to offer more in depth comparisons and assessments between buildings. Identifiers to help the users compare the physical condition of their facility to others needs to be included. Suggestions are as follows:
a. Facility Condition Index (FCI)- easily available to all participants and allows an idea of the comparison of upkeep and maintenance of their facility to that of others.
b. An indicator on whether the comparison buildings are Centers for Medicare and Medicaid Services (CMS) accredited.
4. Gross Square Footage (GSF) is not an accurate assessment on its own. Too many variables are left unidentified to offer an accurate assessment with this method alone.
ContributorsChalmers, Jeffrey (Author) / Sullivan, Kenneth (Thesis advisor) / Smithwick, Jake (Committee member) / Hurtado, Kristen (Committee member) / Arizona State University (Publisher)
Created2020
171659-Thumbnail Image.png
Description
ABSTRACT Upon joining Arizona State University in July 2017, the author, a registered architect, inherited the oversight of the University Project Design Guidelines. During the following four years, revisions were made to the Project Design Guidelines and implemented for ongoing and future new construction and renovation work at

ABSTRACT Upon joining Arizona State University in July 2017, the author, a registered architect, inherited the oversight of the University Project Design Guidelines. During the following four years, revisions were made to the Project Design Guidelines and implemented for ongoing and future new construction and renovation work at all five Arizona State University campuses. During this time, it became evident that many projects were not following guidelines resulting in costly rework, or hastily submitted variance requests to avoid or replace the design guidelines, typically during, versus prior to, construction. Tracking of these variance requests began in Summer 2020 identifying some commonly requested variance items for discussion by the Project Guidelines Steering Committee. In June 2021, a progressive design-build solicitation was held for a new campus building. During the interview process it was evident that not all parties on the design-build team (owner, architect and general contractor) had the same understanding of the role, importance, or reasoning for project design guidelines. The confusion demonstrated during the variance and interview process made the author curious as to the overall sentiment of design standards in the industry. What areas of project guidelines are emphasized by universities? Is there a correlation between guideline information and the greatest/least amount of construction costs? Can universities be better served by focusing on a comprehensive understanding and implementation of project design guidelines that impact the greatest construction cost of the project?
ContributorsLisiewski II, Joseph Vincent (Author) / Sullivan, Kenneth (Thesis advisor) / Hurtato, Kristen (Committee member) / Standage, Richard (Committee member) / Arizona State University (Publisher)
Created2022