Matching Items (18)
Filtering by

Clear all filters

149828-Thumbnail Image.png
Description
The Byrd Glacier region of Antarctica is important for understanding the tectonic development and landscape evolution of the Transantarctic Mountains (TAM). This outlet glacier crossing the TAM marks a major discontinuity in the Neoproterozoic-early Paleozoic Ross orogen. The region has not been geologically mapped in detail, but previous studies have

The Byrd Glacier region of Antarctica is important for understanding the tectonic development and landscape evolution of the Transantarctic Mountains (TAM). This outlet glacier crossing the TAM marks a major discontinuity in the Neoproterozoic-early Paleozoic Ross orogen. The region has not been geologically mapped in detail, but previous studies have inferred a fault to exist beneath and parallel to the direction of flow of Byrd Glacier. Thermochronologic analysis has never been undertaken across Byrd Glacier, and little is known of the exhumation history of the region. The objectives of this study are to assess possible differential movement across the inferred Byrd Glacier fault, to measure the timing of exhumation, and to gain a better overall understanding of the structural architecture of the TAM. Apatites and zircons separated from rock samples collected from various locations north and south of Byrd Glacier were dated using single-crystal (U- Th)/He analysis. Similar cooling histories were revealed with comparable exhumation rates of 0.03 ± 0.003 and 0.04 ± 0.03 mm/yr north and south of Byrd Glacier from apatite data and somewhat similar rates of 0.06 ± 0.008 and 0.04 ± 0.01 mm/yr north and south of Byrd Glacier from zircon data. Age vs. elevation regressions indicate a vertical offset of 1379 ± 159 m and 4000 ± 3466 m from apatite and zircon data. To assess differential movement, the Kukri Peneplain (a regional unconformity) was utilized as a datum. On-site photographs, Landsat imagery, and Aster Global DEM data were combined to map Kukri Peneplain elevation points north and south of Byrd Glacier. The difference in elevation of the peneplain as projected across Byrd Glacier shows an offset of 1122 ± 4.7 m. This study suggests a model of relatively uniform exhumation followed by fault displacement that uplifted the south side of Byrd Glacier relative to the north side. Combining apatite and zircon (U-Th)/He analysis along with remote geomorphologic analysis has provided an understanding of the differential movement and exhumation history of crustal blocks in the Byrd Glacier region. The results complement thermochronologic and geomorphologic studies elsewhere within the TAM providing more information and a new approach.
ContributorsFoley, Daniel Joseph (Author) / Stump, Edmund (Thesis advisor) / Whipple, Kelin X (Committee member) / Hodges, Kip (Committee member) / Arizona State University (Publisher)
Created2011
150066-Thumbnail Image.png
Description
The San Andreas Fault (SAF) is the primary structure within a system of faults accommodating motion between the North American and Pacific plates. Physical models of faulting and characterizations of seismic hazard are informed by investigations of paleoseismology, slip distribution, and slip rate. The impact of earthquakes on people is

The San Andreas Fault (SAF) is the primary structure within a system of faults accommodating motion between the North American and Pacific plates. Physical models of faulting and characterizations of seismic hazard are informed by investigations of paleoseismology, slip distribution, and slip rate. The impact of earthquakes on people is due in large part to social vulnerability. This dissertation contributes an analysis about the relationships between earthquake hazard and social vulnerability in Los Angeles, CA and investigations of paleoseismology and fault scarp array complexity on the central SAF. Analysis of fault scarp array geometry and morphology using 0.5 m digital elevation models along 122 km of the central SAF reveals significant variation in the complexity of SAF structure. Scarp trace complexity is measured by scarp separation, changes in strike, fault trace gaps, and scarp length per SAF kilometer. Geometrical complexity in fault scarp arrays indicates that the central SAF can be grouped into seven segments. Segment boundaries are controlled by interactions with subsidiary faults. Investigation of an offset channel at Parkfield, CA yields a late Holocene slip rate of 26.2 +6.4/- 4.3 mm/yr. This rate is lower than geologic measurements on the Carrizo section of the SAF and rates implied by far-field geodesy. However, it is consistent with historical observations of slip at Parkfield. Paleoseismology at Parkfield indicates that large earthquakes are absent from the stratigraphic record for at least a millennia. Together these observations imply that the amount of plate boundary slip accommodated by the main SAF varies along strike. Contrary to most environmental justice analyses showing that vulnerable populations are spatially-tied to environmental hazards, geospatial analyses relating social vulnerability and earthquake hazard in southern California show that these groups are not disproportionately exposed to the areas of greatest hazard. Instead, park and green space is linked to earthquake hazard through fault zone regulation. In Los Angeles, a parks poor city, the distribution of social vulnerability is strongly tied to a lack of park space. Thus, people with access to financial and political resources strive to live in neighborhoods with parks, even in the face of forewarned risk.
ContributorsToké, Nathan A (Author) / Arrowsmith, J R (Thesis advisor) / Boone, Christopher G (Committee member) / Heimsath, Arjun M (Committee member) / Shock, Everett L (Committee member) / Whipple, Kelin X (Committee member) / Arizona State University (Publisher)
Created2011
152269-Thumbnail Image.png
Description
Sedimentary basins in the Afar Depression, Ethiopia archive the progression of continental breakup, record regional changes in east African climate and volcanism, and host what are arguably the most important fossiliferous strata for studying early human evolution and innovation. Significant changes in rift tectonics, climate, and faunal assemblages occur between

Sedimentary basins in the Afar Depression, Ethiopia archive the progression of continental breakup, record regional changes in east African climate and volcanism, and host what are arguably the most important fossiliferous strata for studying early human evolution and innovation. Significant changes in rift tectonics, climate, and faunal assemblages occur between 3-2.5 million years ago (Ma), but sediments spanning this time period are sparse. In this dissertation, I present the results of a geologic investigation targeting sediments between 3-2.5 Ma in the central and eastern Ledi Geraru (CLG and ELG) field areas in the lower Awash Valley, using a combination of geologic mapping, stratigraphy, and tephra chemistry and dating. At Gulfaytu in CLG, I mapped the northern-most outcrops of the hominin-bearing Hadar Formation (3.8-2.9 Ma), a 20 m-thick section of flat-lying lacustrine sediments containing 8 new tephras that directly overlie the widespread BKT-2 marker beds (2.95 Ma). Paleolake Hadar persisted after 2.95 Ma, and the presence and characteristics of the Busidima Formation (2.7-0.016 Ma) indicates Gulfaytu was affected by a reversal in depositional basin polarity. Combined with regional and geophysical data, I show the Hadar Formation underlying CLG is >300 m thick, supporting the hypothesis that it was the lower Awash Pliocene depocenter. At ELG, I mapped >300 m of sediments spanning 3.0-2.45 Ma. These sediments coarsen upward and show a progression from fluctuating lake conditions to fluvial landscapes and widespread soil development. This is consistent with the temporal change in depositional environments observed elsewhere in the lower Awash Valley, and suggests that these strata are correlative with the Hadar Formation. Furthermore, the strata and basalts at ELG are highly faulted, and overprinted by shifting extension directions attributed to the northern migration of the Afar triple junction. The presence of fossiliferous beds and stone tools makes ELG a high-priority target for anthropological and archaeological research. This study provides a new temporally-calibrated and high-resolution record of deposition, volcanism, and faulting patterns during a period of significant change in the Afar.
ContributorsDiMaggio, Erin Nicole (Author) / Arrowsmith, J Ramon (Thesis advisor) / Whipple, Kelin X (Committee member) / Heimsath, Arjun M (Committee member) / Clarke, Amanda B (Committee member) / Reed, Kaye E (Committee member) / Arizona State University (Publisher)
Created2013
151075-Thumbnail Image.png
Description
The tectonic significance of the physiographic transition from the low-relief Tibetan plateau to the high peaks, rugged topography and deep gorges of the Himalaya is the source of much controversy. Some workers have suggested the transition may be structurally controlled (e.g. Hodges et al., 2001), and indeed, the sharp change

The tectonic significance of the physiographic transition from the low-relief Tibetan plateau to the high peaks, rugged topography and deep gorges of the Himalaya is the source of much controversy. Some workers have suggested the transition may be structurally controlled (e.g. Hodges et al., 2001), and indeed, the sharp change in geomorphic character across the transition strongly suggests differential uplift between the Himalayan realm and the southernmost Tibetan Plateau. Most Himalayan researchers credit the South Tibetan fault system (STFS), a family of predominantly east-west trending, low-angle normal faults with a known trace of over 2,000 km along the Himalayan crest (e.g. Burchfiel et al., 1992), with defining the southern margin of the Tibetan Plateau in the Early Miocene. Inasmuch as most mapped strands of the STFS have not been active since the Middle Miocene (e.g., Searle & Godin, 2003), modern-day control of the physiographic transition by this fault system seems unlikely. However, several workers have documented Quaternary slip on east-west striking, N-directed extensional faults, of a similar structural nature but typically at a different tectonostratigraphic level than the principal STFS strand, in several locations across the range (Nakata, 1989; Wu et al., 1998; Hurtado et al., 2001). In order to explore the nature of the physiographic transition and determine its relationship to potential Quaternary faulting, I examined three field sites: the Kali Gandaki valley in central Nepal (~28˚39'54"N; 83˚35'06"E), the Nyalam region of south-central Tibet (28°03'23.3"N, 86°03'54.08"E), and the Ama Drime Range in southernmost Tibet (87º15'-87º50'E; 27º45'-28º30'N). Research in each of these areas yielded evidence of young faulting on structures with normal-sense displacement in various forms: the structural truncation of lithostratigraphic units, distinctive fault scarps, or abrupt changes in bedrock cooling age patterns. These structures are accompanied by geomorphic changes implying structural control, particularly sharp knickpoints in rivers that drain from the Tibetan Plateau, across the range crest, and down through the southern flank of the Himalaya. Collectively, my structural, geomorphic, and thermochronometric studies confirm the existence of extensional structures near the physiographic transition that have been active more recently than 1.5 Ma in central Nepal, and over the last 3.5 Ma in south-central Tibet. The structural history of the Ama Drime Range is complex and new thermochronologic data suggest multiple phases of E-W extension from the Middle Miocene to the Holocene. Mapping in the accessible portions of the range did not yield evidence for young N-S extension, although my observations do not preclude such deformation on structures south of the study area. In contrast, the two other study areas yielded direct evidence that Quaternary faulting may be controlling the position and nature of the physiographic transition across the central Tibetan Plateau-Himalaya orogenic system.
ContributorsMcDermott, Jeni Amber (Author) / Hodges, Kip V (Thesis advisor) / Whipple, Kelin X (Thesis advisor) / Van Soest, Matthijs C (Committee member) / Arrowsmith, Ramon (Committee member) / Semkin, Steven (Committee member) / Arizona State University (Publisher)
Created2012
161941-Thumbnail Image.png
Description
The tectonism, volcanism, and sedimentation along the East African Rift System (EARS) produced a series of rift basins with a rich paleoanthropological record, including a Late Miocene–present record of hominin evolution. To better understand the relationship between Earth system history and human evolution within the EARS, the Hominin Sites and

The tectonism, volcanism, and sedimentation along the East African Rift System (EARS) produced a series of rift basins with a rich paleoanthropological record, including a Late Miocene–present record of hominin evolution. To better understand the relationship between Earth system history and human evolution within the EARS, the Hominin Sites and Paleolakes Drilling Project (HSPDP) collected paleolake sediments near key paleoanthropological sites in Ethiopia and Kenya, compiling a multi-proxy, high-resolution geological and environmental record. As part of the HSPDP, I studied the detrital mineral record of the basins and evaluated tectonic and climatic controls on East African landscapes during the Plio-Pleistocene using samples from three of the drill sites, Chew Bahir: (CHB, ~620–present; Ethiopia), Northern Awash (NA, ~3.3–2.9 Ma; Ethiopia,), and West Turkana (WTK, ~1.9–1.4 Ma; Kenya). I employed laser ablation U/Pb and (U-Th)/He double dating (LADD) of detrital zircons, which yields paired U/Pb and (U-Th)/He dates, and (U-Th)/He dating of detrital apatites to evaluate sediment provenance and the cooling history of the source rocks. In addition, I used in situ 10Be cosmogenic radionuclide analyses to determine paleoerosion rates. Two chapters of this dissertation focus on results from the NA and WTK drill sites. Source units for the NA and WTK drill sites are largely Cenozoic volcanic rocks, and the detrital zircon record yields an extensive record of the timing of various phases of volcanism within the EARS. Exceptionally young zircon (U-Th)/He dates reflect partial resetting associated with late mafic volcanism and/or hydrothermal activity. Erosion rates are consistent and relatively low across the Plio-Pleistocene, despite significant tectonic and geomorphic shifts in the landscape. Two other chapters of this dissertation cover results from the CHB drill site. The Chew Bahir basin has significant exposures of Neoproterozoic and Early Paleozoic crystalline basement units, and the detrital zircon record yields one singular phase of volcanism in the EARS. The CHB erosion rates show an overall decreasing trend over time, consistent with an aridifying climate, and increased environmental variability after ~200 ka.
ContributorsZawacki, Emily Elizabeth (Author) / Arrowsmith, J Ramon (Thesis advisor) / Campisano, Christopher (Thesis advisor) / Heimsath, Arjun (Committee member) / Hodges, Kip (Committee member) / Whipple, Kelin (Committee member) / Arizona State University (Publisher)
Created2021
171554-Thumbnail Image.png
Description
Rivers in steep mountainous landscapes control how, where, and when signals of base-level fall are transmitted to the surrounding topography. In doing so rivers play an important role in determining landscape evolution in response to external controls of tectonics and climate. However, tectonics and climate often covary and understanding how

Rivers in steep mountainous landscapes control how, where, and when signals of base-level fall are transmitted to the surrounding topography. In doing so rivers play an important role in determining landscape evolution in response to external controls of tectonics and climate. However, tectonics and climate often covary and understanding how they influence landscape evolution remains a significant challenge. The Hawaiian Islands, where tectonics are minimized but climate signals are amplified, provide an opportunity to better understand how signals of climate are recorded by landscapes. Focusing on the Hawaiian Islands, I examine (1) how variability in rock mass properties and thresholds in sediment mobility determine where waterfalls form or stall along the Nāpali coast of Kauaʻi, (2) I then extend these findings to other volcanoes to test if observed physical limits in flood size, climate, and volcano gradient can determine where waterfalls form, and (3) I explore how thresholds in river incision below waterfalls limit information about the influence of climate on river incision rates. Findings from this analysis show that waterfalls form or stall where the maximum unit stream power is at or below a critical unit stream power for bedrock river incision. Climate appears to have little effect in determining where these conditions are met but where waterfalls stall or form does record information about discharge-area scaling for global maximum observed floods. Below waterfalls the maximum incision depth for rivers on the island of Kauaʻi (which formed ~ 4-5 million years ago) is approximately proportional to the inverse square root of mean annual rainfall. Though maximum river incision depths for some of the younger volcanoes do not exhibit the same dependency on mean annual rainfall rates they are comparable to the maximum incision depths observed on Kauaʻi even though they are a quarter to one-tenth the age of Kauaʻi. Importantly, these patterns of incision can be explained by thresholds in sediment mobility as recorded by river longitudinal profiles and indicate that the Hawaiian Islands are dominated by threshold conditions where signals of climate are recorded in the topography through controls on incision depth but not incision rates.
ContributorsRaming, Logan Wren (Author) / Whipple, Kelin X (Thesis advisor) / Arrowsmith, Ramon (Committee member) / Heimsath, Arjun M. (Committee member) / DeVecchio, Duane E. (Committee member) / Schmeeckle, Mark (Committee member) / Arizona State University (Publisher)
Created2022
189371-Thumbnail Image.png
Description
In the southwestern United States, water is a precious resource that influences landscapes and their respective ecosystems. Ephemeral lakes, known as playas, are drainage points for closed or endorheic basins and serve as important locations for plant productivity, biogeochemical processes, and groundwater recharge. In this study, I explore the hydrologic

In the southwestern United States, water is a precious resource that influences landscapes and their respective ecosystems. Ephemeral lakes, known as playas, are drainage points for closed or endorheic basins and serve as important locations for plant productivity, biogeochemical processes, and groundwater recharge. In this study, I explore the hydrologic dynamics of eighteen (18) instrumented playas in the Jornada Basin of the Chihuahuan Desert with respect to the drivers of playa inundation and how their behaviors vary in space and time. To this end, I combine water level observations in playas with gauge-corrected radar precipitation estimates to determine hydrologic dynamics over the more than 6-year period of June 2016 to October 2022. Results indicate that all playa inundation events are associated with precipitation and that 76% of events occur during the warm season from April to September that is characterized by the North American monsoon. Mean annual runoff ratios in the playa catchments range from 0.01% to 9.28%. I observe precipitation depth and 60-minute intensity thresholds for playa inundation ranging from 16.1 to 71.3 mm and 8.8 to 40.5 mm/hr, respectively. Although playa inundation is typically caused by high rainfall amounts and intensities, other factors such as antecedent wetness conditions and the spatial variability of rainfall within the playa catchment also play a role. The magnitudes, durations, and occurrence of inundation events vary among playas, but their responses to precipitation generally agree with groupings determined based on their geological origin. Logistic and linear regressions across all playas reveal the relative importance of catchment variables, such as area, sand fraction, slope, and the percentage of bare ground. It is shown that larger catchment areas are strongly associated with a lower likelihood of inundation and higher precipitation thresholds for inundation. An analysis of precipitation data from 1916 to 2015 leads to the estimation of historical playa inundation and suggests that an increase has occurred in the frequency of large rainfall events that may be associated with increasing frequency of playa inundation. This study highlights the complex nature of playa inundation in the Jornada Basin, which can change over time in an evolving climate and landscape.
ContributorsKimsal, Charles Robert (Author) / Vivoni, Enrique R (Thesis advisor) / Whipple, Kelin X (Committee member) / Li, Jiwei (Committee member) / Arizona State University (Publisher)
Created2023
189401-Thumbnail Image.png
Description
Both volcanic and tectonic landforms are surface expressions of the inner workings of a planet. On Earth, volcanism and crustal deformation are primarily surface expressions of plate tectonics. In contrast, the lunar crust has been deformed by solely endogenic processes following large impact events.The Procellarum KREEP (potassium (K), rare earth

Both volcanic and tectonic landforms are surface expressions of the inner workings of a planet. On Earth, volcanism and crustal deformation are primarily surface expressions of plate tectonics. In contrast, the lunar crust has been deformed by solely endogenic processes following large impact events.The Procellarum KREEP (potassium (K), rare earth elements (REE), and phosphorus (P)) Terrane (PKT) is a thermally and chemically distinct geologic province on the Moon. Despite the wealth of remote sensing data, the origin and evolution of the PKT is poorly understood. This study focuses on floor-fractured craters and silicic magma genesis within the PKT. First, I present a detailed study of floor-fractured craters, including morphometric measurements using topographic datasets from the Lunar Reconnaissance Orbiter Camera (LROC), variations in temporal heat flow, lithospheric rheology and the locations of floor-fractured craters relative to impact basins. The overarching conclusion is viscous relaxation and magmatic intrusion are not necessarily mutually exclusive, as has been argued in earlier studies. This work also provides new evidence for the existence of the putative Procellarum basin. Next, with rhyolite-MELTS modeling, I demonstrate that fractional crystallization of KREEP basalt magmas is a plausible mechanism for generating silicic melts. The results suggest that following crystallization, the composition of the remaining ~30 wt.% liquids are consistent with returned lunar silicic fragments. Finally, using crater counting methods I tested the stratigraphic relationship between the floor-fractured crater, Hansteen, and the silicic volcanic landform, Mons Hansteen. Absolute model ages (AMAs) suggest that the basalts on the floor of Hansteen crater formed contemporaneously with Mons Hansteen, implying that bimodal volcanism might have played a role in silicic magma genesis on the Moon.
ContributorsRavi, Srinidhi (Author) / Robinson, Mark S (Thesis advisor) / Till, Christy B (Committee member) / Watters, Thomas R (Committee member) / Whipple, Kelin X (Committee member) / O'Rourke, Joseph G (Committee member) / Arizona State University (Publisher)
Created2023
187519-Thumbnail Image.png
Description
The presence of ices (H2O and CO2) and liquid water is key to the evolution ofmartian geology, with implications for the potential for past or extant life, and the future of robotic and human exploration on Mars. In this dissertation, I present the first direct evidence that the smooth deposits covering mid-latitude, martian

The presence of ices (H2O and CO2) and liquid water is key to the evolution ofmartian geology, with implications for the potential for past or extant life, and the future of robotic and human exploration on Mars. In this dissertation, I present the first direct evidence that the smooth deposits covering mid-latitude, martian pole-facing slopes are composed of shallow dusty H2O ice covered by desiccated material. To analyze this H2O ice, I developed the first validated radiative transfer model for dusty martian snow and glacier ice. I found that these ice exposures have < 1% dust in them, and discovered the lowest latitude detection of H2O ice on Mars, at 32.9°S. After observing the ice disappear, and new gully channels form, I proposed a model for gully formation. In this model, dusty ice gets exposed by slumping, leading to melting in the subsurface and channels eroding within the ice and the wall rock beneath. Access to liquid water within this ice could provide potential abodes for any extant life. Next, I developed novel methodology to search for CO2 frosts within the entire Thermal Emission Imaging System (THEMIS) infrared dataset and found that about half of all gullies overlap with CO2 frost detections. I also used the Thermal Emission Spectrometer (TES) water vapor retrievals to assess the formation and distribution of H2O frosts on Mars. Additionally, I used radar data from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument to investigate Mars’ ice-rich South Polar Layered Deposits (SPLD). I discovered radar signals similar to those proposed to be caused by a subglacial lake throughout the martian SPLD. Finally, I mapped martian polygonal ridge networks thought to represent fossilized remnants of ancient groundwater near the Perseverance rover landing site with the help of citizen scientists across a fifth of Mars’ total surface area and analyzed their thermophysical properties. All these studies highlight the key role that ices and liquid water have played in shaping Mars’ landscape through time, and provide an intriguing path forward in martian exploration and the search for alien life.
ContributorsKhuller, Aditya Rai (Author) / Christensen, Philip R (Thesis advisor) / Ruff, Steven W (Committee member) / Whipple, Kelin X (Committee member) / Sharp, Thomas G (Committee member) / Shim, Sang-Heon (Committee member) / Arizona State University (Publisher)
Created2023
157563-Thumbnail Image.png
Description
Geochronology and thermochronology are valuable tools for investigating the synergy between the deformational and erosional processes that shape mountainous terrains. Though numerous techniques have been developed to probe the rate and timing of events within these settings, the research presented here explores how scientists can use fewer samples to produce

Geochronology and thermochronology are valuable tools for investigating the synergy between the deformational and erosional processes that shape mountainous terrains. Though numerous techniques have been developed to probe the rate and timing of events within these settings, the research presented here explores how scientists can use fewer samples to produce richer data products with broader contextual importance.

The beginning of this compilation focuses on establishing laboratory techniques to facilitate this goal. I developed a novel laser ablation ‘double dating’ (LADD) technique that rapidly yields paired U/Pb and (U-Th)/He dates for the accessory minerals zircon, titanite, and apatite. The technique obviates the need for geometric corrections typically applied during (U-Th)/He data reduction, enables the analysis of a broader spectrum of detrital crystals, and provides the opportunity for additional mapping and isotopic analyses that are traditionally challenging to procure and/or fraught with assumptions. Despite the technique’s promise, I also found it essential to weigh several considerations of relevance when attempting to date young (≤ Miocene) accessory minerals with low concentrations of U + Th. Consequently, I discuss the impact that such variables have on the magnitude of analytical imprecision and the data’s flexibility for geologic interpretation.

Beyond the lab, I collected a suite of bedrock and detrital samples from small catchments draining the southeastern Sierra Nevada mountains of California. Using the techniques described above as well as conventional methods for (U-Th)/He zircon dating, I compared the utility of both bedrock and detrital approaches for extrapolating local exhumation histories. I additionally tested the ability to employ detrital datasets to extrapolate cooling histories that span from mineral crystallization to rock exhumation through the upper crust. Employing principal mode dates from a combination of zircon and apatite LADD dates and detrital hornblende 40Ar/39Ar dates, I was able to derive thermal models that demonstrate the existence of significant variability in the cooling histories of various intrusive units along the eastern Sierra Nevada. While these results only scratch the surface of what’s possible within the realm of detrital-based research, this contribution demonstrates the utility of expanding the temporal and spatial scope of traditional detrital methodologies.
ContributorsHorne, Alexandra Michelle (Author) / Hodges, Kip V. (Thesis advisor) / van Soest, Matthijs C. (Committee member) / Whipple, Kelin X (Committee member) / Heimsath, Arjun M. (Committee member) / Reynolds, Stephen J. (Committee member) / Arizona State University (Publisher)
Created2019