Matching Items (26)
Filtering by

Clear all filters

149711-Thumbnail Image.png
Description
An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an

An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an obliquely rifted plate margin, gravity surveys were conducted across the normal-fault-bounded basins within the gulf-margin array and, along with optically stimulated luminescence dating of offset surfaces, fault-slip rates were estimated and fault patterns across basins were assessed, providing insight into sedimentary basin evolution. Additionally, detailed geologic and geomorphic maps were constructed along two faults within the system, leading to a more complete understanding of the role of individual normal faults within a larger array. These faults slip at a low rate (0.1-1 mm/yr) and have relatively shallow hanging wall basins (~500-3000 m). Overall, the gulf-margin faults accommodate protracted, distributed deformation at a low rate and provide a minor contribution to overall rifting. Integrating figures with text can lead to greater science learning than when either medium is presented alone. Textbooks, composed of text and graphics, are a primary source of content in most geology classes. It is essential to understand how students approach learning from text and figures in textbook-style learning materials and how the arrangement of the text and figures influences their learning approach. Introductory geology students were eye tracked while learning from textbook-style materials composed of text and graphics. Eye fixation data showed that students spent less time examining the figure than the text, but the students who more frequently examined the figure tended to improve more from the pretest to the posttest. In general, students tended to examine the figure at natural breaks in the reading. Textbook-style materials should, therefore, be formatted to include a number of natural breaks so that learners can pause to inspect the figure without the risk of losing their place in the reading and to provide a chance to process the material in small chunks. Multimedia instructional materials should be designed to support the cognitive processes of the learner.
ContributorsBusch, Melanie M. D (Author) / Arrowsmith, Ramon (Thesis advisor) / Reynolds, Stephen (Thesis advisor) / Chi, Michelene (Committee member) / Semken, Steven (Committee member) / Tyburczy, James (Committee member) / Arizona State University (Publisher)
Created2011
150188-Thumbnail Image.png
Description
Meter-resolution topography gathered by LiDAR (Light Detection and Ranging) has become an indispensable tool for better understanding of many surface processes including those sculpting landscapes that record information about earthquake hazards for example. For this reason, and because of the spectacular representation of the phenomena that these data provide, it

Meter-resolution topography gathered by LiDAR (Light Detection and Ranging) has become an indispensable tool for better understanding of many surface processes including those sculpting landscapes that record information about earthquake hazards for example. For this reason, and because of the spectacular representation of the phenomena that these data provide, it is appropriate to integrate these data into Earth science educational materials. I seek to answer the following research question: "will using the LiDAR topography data instead of, or alongside, traditional visualizations and teaching methods enhance a student's ability to understand geologic concepts such as plate tectonics, the earthquake cycle, strike-slip faults, and geomorphology?" In order to answer this question, a ten-minute introductory video on LiDAR and its uses for the study of earthquakes entitled "LiDAR: Illuminating Earthquake Hazards" was produced. Additionally, LiDAR topography was integrated into the development of an undergraduate-level educational activity, the San Andreas fault (SAF) earthquake cycle activity, designed to teach introductory Earth science students about the earthquake cycle. Both the LiDAR video and the SAF activity were tested in undergraduate classrooms in order to determine their effectiveness. A pretest and posttest were administered to introductory geology lab students. The results of these tests show a notable increase in understanding LiDAR topography and its uses for studying earthquakes from pretest to posttest after watching the video on LiDAR, and a notable increase in understanding the earthquake cycle from pretest to posttest using the San Andreas Fault earthquake cycle exercise. These results suggest that the use of LiDAR topography within these educational tools is beneficial for students when learning about the earthquake cycle and earthquake hazards.
ContributorsRobinson, Sarah Elizabeth (Author) / Arrowsmith, Ramon (Thesis advisor) / Reynolds, Stephen J. (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2011
150115-Thumbnail Image.png
Description
The spectacular geological panoramas of Grand Canyon National Park (GCNP) motivate the curiosity of visitors about geology. However, there is little research on how well these visitors understand the basic geologic principles on display in the Canyon walls. The new Trail of Time (ToT) interpretative exhibit along the South Rim

The spectacular geological panoramas of Grand Canyon National Park (GCNP) motivate the curiosity of visitors about geology. However, there is little research on how well these visitors understand the basic geologic principles on display in the Canyon walls. The new Trail of Time (ToT) interpretative exhibit along the South Rim uses Grand Canyon vistas to teach these principles. Now being visited by thousands daily, the ToT is a uniquely valuable setting for research on informal learning of geologic time and other basic geologic concepts. At the ToT, visitors are not only asked to comprehend a linear timeline, but to associate it with the strata exposed in the walls of the Canyon. The research addressed two primary questions: (1) how do visitors of the National Park use elements of the geologic landscape of the Grand Canyon to explain fundamental principles of relative geologic time? and (2) how do visitors reconcile the relationship between the horizontal ToT timeline and the vertical encoding of time in the strata exposed in the Canyon walls? Semi-structured interviews tracked participants' understanding of the ToT exhibit and of basic principles of geologic time. Administering the verbal analysis method of Chi (1997) to the interview transcripts, the researcher identified emergent themes related to how the respondents utilized the landscape to answer interview questions. Results indicate that a majority of respondents are able to understand principles of relative geologic time by utilizing both the observed and inferred landscape of Grand Canyon. Results also show that by applying the same integrated approach to the landscape, a majority of respondents are able to reconcile stratigraphic time with the horizontal ToT timeline. To gain deeper insight into the cognitive skills activated to correctly understand geologic principles the researcher used Dodick and Orion's application of Montangero's (1996) diachronic thinking model to code responses into three schemes: (1) transformation, (2) temporal organization, and (3) interstage linkage. Results show that correct responses required activation of the temporal organization scheme or the more advanced interstage linkage scheme. Appropriate application of these results can help inform the development of future outdoor interpretive geoscience exhibits.
ContributorsFrus, Rebecca (Author) / Semken, Steven (Thesis advisor) / Baker, Dale (Committee member) / Farmer, Jack (Committee member) / Arizona State University (Publisher)
Created2011
149701-Thumbnail Image.png
Description
Geoscience educators commonly teach geology by projecting a photograph in front of the class. Geologic photographs often contain animals, people, and inanimate objects that help convey the scale of features in the photograph. Although scale items seem innocuous to instructors and other experts, the presence of such items is distracting

Geoscience educators commonly teach geology by projecting a photograph in front of the class. Geologic photographs often contain animals, people, and inanimate objects that help convey the scale of features in the photograph. Although scale items seem innocuous to instructors and other experts, the presence of such items is distracting and has a profound effect on student learning behavior. To evaluate how students visually interact with distracting scale items in photographs and to determine if cueing or signaling is an effective means to direct students to pertinent information, students were eye tracked while looking at geologically-rich photographs. Eye-tracking data revealed that learners primarily looked at the center of an image, focused on faces of both humans and animals if they were present, and repeatedly returned to looking at the scale item (distractor) for the duration an image was displayed. The presence of a distractor caused learners to look at less of an image than when a distractor was not present. Learners who received signaling tended to look at the distractor less, look at the geology more, and surveyed more of the photograph than learners who did not receive signaling. The San Antonio area in the southern part of the Baja California Peninsula is host to hydrothermal gold deposits. A field study, including drill-core analysis and detailed geologic mapping, was conducted to determine the types of mineralization present, the types of structures present, and the relationship between the two. This investigation revealed that two phases of mineralization have occurred in the area; the first is hydrothermal deposition of gold associated with sulfide deposits and the second is oxidation of sulfides to hematite, goethite, and jarosite. Mineralization varies as a function of depth, whereas sulfides occurring at depth, while minerals indicative of oxidation are limited to shallow depths. A structural analysis revealed that the oldest structures in the study area include low-grade to medium-grade metamorphic foliation and ductile mylonitic shear zones overprinted by brittle-ductile mylonitic fabrics, which were later overprinted by brittle deformation. Both primary and secondary mineralization in the area is restricted to the later brittle features. Alteration-bearing structures have an average NNW strike consistent with northeast-southwest-directed extension, whereas unaltered structures have an average NNE strike consistent with more recent northwest-southeast-directed extension.
ContributorsCoyan, Joshua (Author) / Reynolds, Stephen (Thesis advisor) / Arrowsmith, Ramon (Committee member) / Chi, Michelene (Committee member) / Piburn, Michael (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2011
151313-Thumbnail Image.png
Description
ABSTRACT The accretion of juvenile island-arc lithosphere by convergent tectonism during the Paleoproterozoic, in conjunction with felsic volcanism, resulted in the assembly, ductile to partial brittle deformation, uplift, and northwest-directed thrusting of rocks in the McDowell Mountains region and adjacent areas in the Mazatzal Orogenic belt. Utilizing lithologic characteristics and

ABSTRACT The accretion of juvenile island-arc lithosphere by convergent tectonism during the Paleoproterozoic, in conjunction with felsic volcanism, resulted in the assembly, ductile to partial brittle deformation, uplift, and northwest-directed thrusting of rocks in the McDowell Mountains region and adjacent areas in the Mazatzal Orogenic belt. Utilizing lithologic characteristics and petrographic analysis of the Proterozoic bedrock, a correlation to the Alder series was established, revising the stratigraphic sequences described by earlier works. The central fold belt, composed of an open, asymmetric syncline and an overturned, isoclinal anticline, is cut by an axial-plane parallel reactivated thrust zone that is intruded by a deformed Paleoproterozoic mafic dike. Finite strain analyses of fold geometries, shear fabrics, foliations, fold vergence, and strained clasts point to Paleoproterozoic northwest-directed thrusting associated with the Mazatzal orogen at approximately 1650 million years ago. Previous studies constrained the regional P-T conditions to at least the upper andalusite-kyanite boundary at peak metamorphic conditions, which ranged from 4-6 kilobars and 350-450⁰ Celsius, although the plasticity of deformation in a large anticlinal core suggests that this represents the low end of the P-T conditions. Subsequent to deformation, the rocks were intruded by several granitoid plutons, likely of Mesoproterozoic age (1300-1400 Ma). A detailed analysis of Proterozoic strain solidly places the structure of the McDowell Mountains within the confines of the Mazatzal Orogeny, pending any contradictory geochronological data.
ContributorsVance, Brad (Author) / Reynolds, Stephen J. (Thesis advisor) / Semken, Steven (Committee member) / Stump, Edmund (Committee member) / Arizona State University (Publisher)
Created2012
152419-Thumbnail Image.png
Description
Science, Technology, Engineering & Mathematics (STEM) careers have been touted as critical to the success of our nation and also provide important opportunities for access and equity of underrepresented minorities (URM's). Community colleges serve a diverse population and a large number of undergraduates currently enrolled in college, they are well

Science, Technology, Engineering & Mathematics (STEM) careers have been touted as critical to the success of our nation and also provide important opportunities for access and equity of underrepresented minorities (URM's). Community colleges serve a diverse population and a large number of undergraduates currently enrolled in college, they are well situated to help address the increasing STEM workforce demands. Geoscience is a discipline that draws great interest, but has very low representation of URM's as majors. What factors influence a student's decision to major in the geosciences and are community college students different from research universities in what factors influence these decisions? Through a survey-design mixed with classroom observations, structural equation model was employed to predict a student's intent to persist in introductory geology based on student expectancy for success in their geology class, math self-concept, and interest in the content. A measure of classroom pedagogy was also used to determine if instructor played a role in predicting student intent to persist. The targeted population was introductory geology students participating in the Geoscience Affective Research NETwork (GARNET) project, a national sampling of students in enrolled in introductory geology courses. Results from SEM analysis indicated that interest was the primary predictor in a students intent to persist in the geosciences for both community college and research university students. In addition, self-efficacy appeared to be mediated by interest within these models. Classroom pedagogy impacted how much interest was needed to predict intent to persist, in which as classrooms became more student centered, less interest was required to predict intent to persist. Lastly, math self-concept did not predict student intent to persist in the geosciences, however, it did share variance with self-efficacy and control of learning beliefs, indicating it may play a moderating effect on student interest and self-efficacy. Implications of this work are that while community college students and research university students are different in demographics and content preparation, student-centered instruction continues to be the best way to support student's interest in the sciences. Future work includes examining how math self-concept may play a role in longitudinal persistence in the geosciences.
ContributorsKraft, Katrien J. van der Hoeven (Author) / Husman, Jenefer (Thesis advisor) / Semken, Steven (Thesis advisor) / Baker, Dale R. (Committee member) / McConnell, David (Committee member) / Arizona State University (Publisher)
Created2014
150923-Thumbnail Image.png
Description
New quadrangle-scale geologic mapping of the western part of the Date Creek Mountains (DCM) in west-central Arizona has revealed new insights into the geologic units, structures, and geologic history. Three U-Pb dates also provide surprising new information about the age and spatial relationships of the DCM as well as implications

New quadrangle-scale geologic mapping of the western part of the Date Creek Mountains (DCM) in west-central Arizona has revealed new insights into the geologic units, structures, and geologic history. Three U-Pb dates also provide surprising new information about the age and spatial relationships of the DCM as well as implications for the tectonics of the area. Paleoproterozoic metamorphic rocks in the central part of the DCM are presumably correlative with the Yavapai schist exposed in other parts of the Arizona Transition Zone. A granite formerly assigned to the Paleoproterozoic was subdivided into megacrystic and fine-grained units and hosts a set of previously undescribed subvertical felsic dikes. A new U-Pb date of the fine-grained phase has shown that unit to be Jurassic. The Mesoproterozoic Granite of Joshua Tree Parkway (Bryant, 1995), which also has fine-grained and megacrystic phases, displays a subhorizontal interunit contact suggestive of vertical stacking of individual intrusions. The age of another granitic pluton previously thought to be Laramide has been revised to Jurassic with the new U-Pb dates. Multiple noncontinuous sections of Tertiary volcanic rocks cover parts of the western end of the range with a combined thickness of at least 500 m. Tertiary basin fill abuts the northern and western edges of the range and perched remnants of the fill in the mountains suggest a former thickness of at least 100 m more than today. Quaternary alluvium is present in the drainages and covers the slopes south of the mountains. In addition to the felsic dikes, mafic and pegmatite dikes are also present. Two major structures are exposed in the study area: a roughly north-trending graben at the western end of the range and a probable normal fault which cuts northwest-southeast across the DCM and displays a zone of brittle deformation up to a few hundred meters wide. The orientation of the normal fault mirrors that of other similar faults in the area and is considered to be the result of regional tectonics activity, while the graben may owe its existence to movement on an underlying low-angle detachment fault.
ContributorsEddy, David (Author) / Reynolds, Stephen J. (Thesis advisor) / Arrowsmith, J R (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2012
137596-Thumbnail Image.png
Description
Blue Mound State Park, located in the state of Wisconsin (USA), is host to a topographic anomaly known as Blue Mound. This mound is the western of the two mounds that make up the park, and it marks the highest elevation in southern Wisconsin. Unlike its eastern sibling, Blue Mound

Blue Mound State Park, located in the state of Wisconsin (USA), is host to a topographic anomaly known as Blue Mound. This mound is the western of the two mounds that make up the park, and it marks the highest elevation in southern Wisconsin. Unlike its eastern sibling, Blue Mound possesses an unusual chert cap that may have protected it from erosion, thus preserving its stratigraphic integrity. Although Blue Mound's unique chert armor was noted in 1927 by the Wisconsin Geological and Natural History Survey, no published work has satisfactorily explained its origin. As little was known about the formation of cherts until the mid-to-late 1900s, the Blue Mound cap was classified merely as a Silurian dolostone into which chert had somehow become integrated (Steidtmann). However, the published observations of the Blue Mound chert do not necessarily match with the classification granted by the Wisconsin Geological and Natural History Survey, nor were any convincing interpretations offered regarding the presence of the chert. Since 1927, significant progress in the field of sedimentology has been achieved. There now exists knowledge that may fill the gaps between observation and interpretation in the Blue Mound survey. The observations in the 1927 bulletin correspond with modern notions of a paleokarst chert breccia, which forms a chert rubble or residuum. A chert breccia is formed when existing clasts, or pieces, of chert become cemented together by further chert deposition (Kolodny, Chaussidon and Katz). This can form large boulders of chert rubble that resist erosion. Accumulation of chert rubble has been documented to form along old weathering surfaces as an insoluble residue in environments similar to Blue Mound (Kolodny, Chaussidon and Katz). The purpose of this investigation was to verify the observations within the 1927 survey of the Blue Mound chert, and determine through field observations and sample study if the Blue Mound chert fits the model of a paleokarst chert breccia.
ContributorsGalarowicz, Calley (Author) / Knauth, Paul (Thesis director) / Semken, Steven (Committee member) / Martin, Thomas (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2013-05
135035-Thumbnail Image.png
Description
For the geoscience community to continue to grow, students need to be attracted to the field. Here we examine the Incorporated Research Institutions for Seismology (IRIS) Research Experience for Undergraduates (REU) program to understand how the participants' experiences' affects their interest in geoscience and educational and career goals. Eleven interns

For the geoscience community to continue to grow, students need to be attracted to the field. Here we examine the Incorporated Research Institutions for Seismology (IRIS) Research Experience for Undergraduates (REU) program to understand how the participants' experiences' affects their interest in geoscience and educational and career goals. Eleven interns over two years (2013-2014) were interviewed prior to the start of their internship, after their internship, and after presenting their research at the American Geophysical Union annual meeting. This internship program is of particular interest because many of the interns come into the REU with non-geoscience or geophysics backgrounds (e.g., physics, mathematics, chemistry, engineering). Both a priori and emergent codes are used to convert interview transcripts into quantitative data, which is analyzed alongside demographic information to understand how the REU influences their decisions. Increases in self-efficacy and exposure to multiple facets of geoscience research are expressed as primary factors that help shape their future educational and career goals. Other factors such as networking opportunities and connections during the REU also can play a role in their decision. Overall, REU participants who identified as geosciences majors solidified their decisions to pursue a career in geosciences, while participants who identified as non-geosciences majors were inclined to change majors, pursue geosciences in graduate school, or explore other job opportunities in the geosciences.
ContributorsGossard, Trey Marshall (Author) / Semken, Steven (Thesis director) / Garnero, Edward (Committee member) / Reynolds, Stephen (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134620-Thumbnail Image.png
Description
This research focuses on a geologic controversy regarding the stratigraphic position of the Hermit Formation outside of the Grand Canyon, specifically in Sedona, Arizona. The goal of this research is to provide additional constraints on this dispute by pinpointing the transition to the Hermit Formation in Sedona, if possible. To

This research focuses on a geologic controversy regarding the stratigraphic position of the Hermit Formation outside of the Grand Canyon, specifically in Sedona, Arizona. The goal of this research is to provide additional constraints on this dispute by pinpointing the transition to the Hermit Formation in Sedona, if possible. To accomplish this, we use field observations and detrital zircon dating techniques to compare data we collected in Sedona with data previously published for the Grand Canyon. Fossil evidence in Sedona and near Payson, Arizona is also used to aid correlation. Starting from the Grand Canyon, the Hermit Formation pinches out to the southeast and, hypothetically obstructed by the Sedona Arch, does not reach Sedona. Detrital zircon data show similar age distributions between the Grand Canyon and Sedona rock units, but the results are not strong enough to confidently correlate units between these two localities. The data collected for this study suggest that if the Hermit Formation is present in Sedona, it is limited to higher up in the section as opposed to occupying the middle portion of the section as is currently interpreted. To determine with greater accuracy whether the Hermit Formation does exist higher in the section of Sedona, more detrital zircons should be collected and analyzed from the part of the section that yielded a relative increase in young zircons aged 200-600 Ma.
ContributorsFinger, Mikayla (Co-author) / Spitzer, Patrick (Co-author) / Reynolds, Stephen (Thesis director) / Semken, Steven (Committee member) / DeVecchio, Duane (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05