Matching Items (5)
Filtering by

Clear all filters

151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
135972-Thumbnail Image.png
Description
The Performance Based Studies Research Studies Group (PBSRG) at Arizona State University (ASU) has been studying the cause of increased cost and time in construction and other projects for the last 20 years. Through two longitudinal studies with a group of owners in the state of Minnesota (400 tests over

The Performance Based Studies Research Studies Group (PBSRG) at Arizona State University (ASU) has been studying the cause of increased cost and time in construction and other projects for the last 20 years. Through two longitudinal studies with a group of owners in the state of Minnesota (400 tests over six years) and the US Army Medical Command (400 tests over four years), the client/buyer has been identified as the largest risk and source of project cost and time deviations. This has been confirmed by over 1,500 tests conducted over the past 20 years. The focus of this research effort is to analyze the economic and performance impact of a delivery process of construction called the Job Order Contracting (JOC) process, to evaluate the value (in terms of time, cost, and customer satisfaction) achieved when utilizing JOC over other traditional methods to complete projects. JOC's strength is that it minimizes the need for the owner to manage, direct and control (MDC) through a lengthy traditional process of design, bid, and award of a construction contract. The study identifies the potential economic savings of utilizing JOC. This paper looks at the results of an ongoing study surveying eight different public universities. The results of the research show that in comparison to more traditional models, JOC has large cost savings, and is preferable among most owners who have used multiple delivery systems.
ContributorsLi, Hao (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Industrial, Systems (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
136655-Thumbnail Image.png
Description

The U.S. Navy and other amphibious military organizations utilize a derivation of the traditional side stroke called the Combat Side Stroke, or CSS, and tout it as the most efficient technique available. Citing its low aerobic requirements and slow yet powerful movements as superior to the traditionally-best front crawl (freestyle),

The U.S. Navy and other amphibious military organizations utilize a derivation of the traditional side stroke called the Combat Side Stroke, or CSS, and tout it as the most efficient technique available. Citing its low aerobic requirements and slow yet powerful movements as superior to the traditionally-best front crawl (freestyle), the CSS is the go-to stroke for any operation in the water. The purpose of this thesis is to apply principles of Industrial Engineering to a real-world situation not typically approached from a perspective of optimization. I will analyze pre-existing data about various swim strokes in order to compare them in terms of efficiency for different variables. These variables include calories burned, speed, and strokes per unit distance, as well as their interactions. Calories will be measured by heart rate monitors, converting BPM to calories burned. Speed will be measured by stopwatch and observer. Strokes per unit distance will be measured by observer. The strokes to be analyzed include the breast stroke, crawl stroke, butterfly, and combat side stroke. The goal is to informally test the U.S. Navy's claim that the combat side stroke is the optimum stroke to conserve energy while covering distance. Because of limitations in the scope of the project, analysis will be done using data collected from literary sources rather than through experimentation. This thesis will include a design of experiment to test the findings here in practical study. The main method of analysis will be linear programming, followed by hypothesis testing, culminating in a design of experiment for future progress on this topic.

ContributorsGoodsell, Kevin Lewis (Author) / McCarville, Daniel R. (Thesis director) / Kashiwagi, Jacob (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2014-12
Description
The Performance Based Studies Research Group (PBSRG) uses a leading model that helps people and procurement projects alike minimize risk while maximizing productivity. While there are a multitude of factors that propel this model, Information Measurement Theory (IMT) is the main element of the Best Value approach the group takes.

The Performance Based Studies Research Group (PBSRG) uses a leading model that helps people and procurement projects alike minimize risk while maximizing productivity. While there are a multitude of factors that propel this model, Information Measurement Theory (IMT) is the main element of the Best Value approach the group takes. I wanted to take the dominant information elements of IMT that helped me find my true self and increase my level of efficiency, and use them to find what it takes to become a successful veterinarian. In order to do this, the Kashiwagi Solution Model (KSM) within IMT was the perfect way to distinguish more successful, higher performing veterinarians from the less successful, lower performing veterinarians. In order to do this, a number of KSM-designed questions were created to score each veterinarian's level of perception. These, along with other background and performance questions, were put into a short survey and sent out. Once this was done, other elements of the veterinarians' lives could be compared side by side to their perception level. The results, of which 970 surveys were returned, found that the more expert a veterinarian is, the lower number of animals they will see per day and the better they know their customer satisfaction rating. These are both then theorized to work in conjunction to form the final correlation that the more perceptive the veterinarian, the higher their performance, aka their clinic's rating. In addition to this, no correlation was found between a veterinarian's level of thinking and their GPA from graduate school. It was concluded that though these correlations are found, I would recommend another project to be done in which all veterinarians of each surveyed clinic could be analyzed in order to gain more insight into any trends that exist between a veterinarian's level of thinking and their performance.
ContributorsBoon, Kurtis Ventry (Author) / Kashiwagi, Jacob (Thesis director) / Finney, Gina Lee (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
156883-Thumbnail Image.png
Description
The continuing advancement of modulation standards with newer generations of cellular technology, promises ever increasing data rate and bandwidth efficiency. However, these modulation schemes present high peak to average power ratio (PAPR) even after applying crest factor reduction. Being the most power-hungry component in the radio frequency (RF) transmitter,

The continuing advancement of modulation standards with newer generations of cellular technology, promises ever increasing data rate and bandwidth efficiency. However, these modulation schemes present high peak to average power ratio (PAPR) even after applying crest factor reduction. Being the most power-hungry component in the radio frequency (RF) transmitter, power amplifiers (PA) for infrastructure applications, need to operate efficiently at the presence of these high PAPR signals while maintaining reasonable linearity performance which could be improved by moderate digital pre-distortion (DPD) techniques. This strict requirement of operating efficiently at average power level while being capable of delivering the peak power, made the load modulated PAs such as Doherty PA, Outphasing PA, various Envelope Tracking PAs, Polar transmitters and most recently the load modulated balanced PA, the prime candidates for such application. However, due to its simpler architecture and ability to deliver RF power efficiently with good linearity performance has made Doherty PA (DPA) the most popular solution and has been deployed almost exclusively for wireless infrastructure application all over the world.

Although DPAs has been very successful at amplifying the high PAPR signals, most recent advancements in cellular technology has opted for higher PAPR based signals at wider bandwidth. This lead to increased research and development work to innovate advanced Doherty architectures which are more efficient at back-off (BO) power levels compared to traditional DPAs. In this dissertation, three such advanced Doherty architectures and/or techniques are proposed to achieve high efficiency at further BO power level compared to traditional architecture using symmetrical devices for carrier and peaking PAs. Gallium Nitride (GaN) based high-electron-mobility (HEMT) technology has been used to design and fabricate the DPAs to validate the proposed advanced techniques for higher efficiency with good linearity performance at BO power levels.
ContributorsRuhul Hasin, Muhammad (Author) / Kitchen, Jennifer (Thesis advisor) / Aberle, James T., 1961- (Committee member) / Bakkaloglu, Bertan (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2018