Matching Items (6)
Filtering by

Clear all filters

150354-Thumbnail Image.png
Description
There is an inexorable link between structure and stress, both of which require study in order to truly understand the physics of thin films. To further our knowledge of thin films, the relationship between structure and stress development was examined in three separate systems in vacuum. The first was continued

There is an inexorable link between structure and stress, both of which require study in order to truly understand the physics of thin films. To further our knowledge of thin films, the relationship between structure and stress development was examined in three separate systems in vacuum. The first was continued copper thin film growth in ultra-high vacuum after adsorption of a sub-monolayer quantity of oxygen. Results showed an increase in compressive stress generation, and theory was proposed to explain the additional compressive stress within the films. The second system explored was the adsorption of carbon monoxide on the platinum {111} surface in vacuum. The experiments displayed a correlation between known structural developments in the adsorbed carbon monoxide adlayer and the surface stress state of the system. The third system consisted of the growth and annealing stresses of ice thin films at cryogenic temperatures in vacuum. It was shown that the growth stresses are clearly linked to known morphology development from literature, with crystalline ice developing compressive and amorphous ice developing tensile stresses respectively, and that amorphous ice films develop additional tensile stresses upon annealing.
ContributorsKennedy, Jordan (Author) / Friesen, Cody (Thesis advisor) / Sieradzki, Karl (Committee member) / Crozier, Peter (Committee member) / Arizona State University (Publisher)
Created2011
151514-Thumbnail Image.png
Description
Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result

Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result of the interplay between percolation dissolution and surface diffusion. In contrast, dealloying in alloys that show considerable solid-state mass transport at ambient temperature is largely unexplored despite its relevance to nanoparticle catalysts and Li-ion anodes. In my dissertation, I discuss the behaviors of two alloy systems in order to elucidate the role of bulk lattice diffusion in dealloying. First, Mg-Cd alloys are chosen to show that when the dealloying is controlled by bulk diffusion, a new type of porosity - negative void dendrites will form, and the process mirrors electrodeposition. Then, Li-Sn alloys are studied with respect to the composition, particle size and dealloying rate effects on the morphology evolution. Under the right condition, dealloying of Li-Sn supported by percolation dissolution results in the same bi-continuous structure as nanoporous noble metals; whereas lattice diffusion through the otherwise "passivated" surface allows for dealloying with no porosity evolution. The interactions between bulk diffusion, surface diffusion and dissolution are revealed by chronopotentiometry and linear sweep voltammetry technics. The better understanding of dealloying from these experiments enables me to construct a brief review summarizing the electrochemistry and morphology aspects of dealloying as well as offering interpretations to new observations such as critical size effect and encased voids in nanoporous gold. At the end of the dissertation, I will describe a preliminary attempt to generalize the morphology evolution "rules of dealloying" to all solid-to-solid interfacial controlled phase transition process, demonstrating that bi-continuous morphologies can evolve regardless of the nature of parent phase.
ContributorsChen, Qing (Author) / Sieradzki, Karl (Thesis advisor) / Friesen, Cody (Committee member) / Buttry, Daniel (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2013
173647-Thumbnail Image.png
Description

Richard Woltereck was a German zoologist and hydrobiologist who studied aquatic animals and extended the concept of Reaktionsnorm (norm of reaction) to the study of genetics. He also provided some of the first experimental evidence for the early twentieth-century embryological theory of heredity known as cytoplasmic inheritance. Through experiments on

Richard Woltereck was a German zoologist and hydrobiologist who studied aquatic animals and extended the concept of Reaktionsnorm (norm of reaction) to the study of genetics. He also provided some of the first experimental evidence for the early twentieth-century embryological theory of heredity known as cytoplasmic inheritance. Through experiments on the water flea, Daphnia, Woltereck investigated whether variation produced by environmental impacts on development could play a role in heredity and evolution. Woltereck's research emphasized the importance of environment and development in Wilhelm Johannsen's concepts of genotype and phenotype. Biologists throughout the twentieth century used Woltereck's concept of Reaktionsnorm to develop theories and experiments to explain the evolution of adaptive developmental responses to environmental conditions. Later in his career, Woltereck developed a theory of heredity that sought to reconcile embryological concepts, such as regulation and body plans, with Mendelian heredity and Darwinian evolution by natural selection.

Created2012-05-13
173652-Thumbnail Image.png
Description

Richard Woltereck first described the concept of Reaktionsnorm (norm of reaction) in his 1909 paper 'Weitere experimentelle Untersuchungen uber Art-veranderung, speziell uber das Wesen quantitativer Artunterschiede bei Daphniden' ('Further investigations of type variation, specifically concerning the nature of quantitative differences between varieties of Daphnia'). This concept refers to the ways

Richard Woltereck first described the concept of Reaktionsnorm (norm of reaction) in his 1909 paper 'Weitere experimentelle Untersuchungen uber Art-veranderung, speziell uber das Wesen quantitativer Artunterschiede bei Daphniden' ('Further investigations of type variation, specifically concerning the nature of quantitative differences between varieties of Daphnia'). This concept refers to the ways in which the environment can alter the development of an organism, and its adult characteristics. Woltereck conceived of the Reaktionsnorm as the full range of potentialities latent in a single genotype, evocable by the environmental circumstances of a developing organism. Biologists used variants of Woltereck's concept of Reaktionsnorm, often called the reaction norm or norm of reaction, throughout the twentieth century in attempts to explain how developmental responses to the environment can evolve, and even alter the tempo and direction of evolutionary change.

Created2012-09-06
171791-Thumbnail Image.png
Description
The intramandibular joint (IMJ) in Helostoma temminckii, also known as kissing gourami, is located in the lower jaw at the articulation of the dentary and angular-articular bones. These fish are known for a ‘kissing’ behavior, facilitated by the IMJ, which allows the jaws to protrude and rotate making the mouth

The intramandibular joint (IMJ) in Helostoma temminckii, also known as kissing gourami, is located in the lower jaw at the articulation of the dentary and angular-articular bones. These fish are known for a ‘kissing’ behavior, facilitated by the IMJ, which allows the jaws to protrude and rotate making the mouth appear to look like pursed lips. The IMJ has independently evolved in the teleost lineage multiple times, and the mechanics are slightly different in each lineage. In kissing gourami, there are no muscular connections to the region of the lower jaw anterior to the IMJ, thus the IMJ is something of an enigma in terms of how it is mobilized during feeding, and moreover returned to a resting state after feeding. High-speed video was used to examine lateral expansion particularly in the regions of the intramandibular joint (IMJ) and the quadratomandibular (QMJ) joint. Individuals were filmed from a lateral and ventral view simultaneously during food capture. From the data, it appears that the expansion at the IMJ contributes to lateral expansion of the head during food capture. Lateral expansion at the location of the IMJ appears to occur in tandem with rotation about that joint; however, lateral expansion in this species is also rather slight due to their extremely rigid heads.
ContributorsLevy, Taylor (Author) / Ferry, Lara (Thesis advisor) / Gibb, Alice (Committee member) / Polidoro, Beth (Committee member) / Arizona State University (Publisher)
Created2022
191703-Thumbnail Image.png
Description
This study examined bite force generation in American monkfish (Lophius americanus) and how it scaled with size, focusing in particular on the roles of the quadratomandibularis (QM) muscle and mechanical advantage in jaw closure in this species. Considering the feeding strategy of other anglerfishes, it was hypothesized that monkfish would

This study examined bite force generation in American monkfish (Lophius americanus) and how it scaled with size, focusing in particular on the roles of the quadratomandibularis (QM) muscle and mechanical advantage in jaw closure in this species. Considering the feeding strategy of other anglerfishes, it was hypothesized that monkfish would trend towards force optimization rather than speed optimization in terms of the jaw closing system. The data revealed that bite force has a slightly positive allometric scaling relationship with size, while mechanical advantage was constant throughout growth. Maximum theoretical bite force ranged from 8 N to 87 N, with total lengths ranging from 17 cm to 51 cm. When comparing the bite force of the American monkfish to that of 10 other fish species, small monkfish exhibit a bite comparable to similarly sized species. However, larger monkfish were estimated to have a stronger bite than organisms of similar size.
ContributorsSawant, Sarika (Author) / Ferry, Lara (Thesis advisor) / Barley, Anthony (Committee member) / Shiffman, David (Committee member) / Arizona State University (Publisher)
Created2024