Matching Items (6)
Filtering by

Clear all filters

150317-Thumbnail Image.png
Description
To address sustainability issues in wastewater treatment (WWT), Siemens Water Technologies (SWT) has designed a "hybrid" process that couples common activated sludge (AS) and anaerobic digestion (AD) technologies with the novel concepts of AD sludge recycle and biosorption. At least 85% of the hybrid's AD sludge is recycled to the

To address sustainability issues in wastewater treatment (WWT), Siemens Water Technologies (SWT) has designed a "hybrid" process that couples common activated sludge (AS) and anaerobic digestion (AD) technologies with the novel concepts of AD sludge recycle and biosorption. At least 85% of the hybrid's AD sludge is recycled to the AS process, providing additional sorbent for influent particulate chemical oxygen demand (PCOD) biosorption in contact tanks. Biosorbed PCOD is transported to the AD, where it is converted to methane. The aim of this study is to provide mass balance and microbial community analysis (MCA) of SWT's two hybrid and one conventional pilot plant trains and mathematical modeling of the hybrid process including a novel model of biosorption. A detailed mass balance was performed on each tank and the overall system. The mass balance data supports the hybrid process is more sustainable: It produces 1.5 to 5.5x more methane and 50 to 83% less sludge than the conventional train. The hybrid's superior performance is driven by 4 to 8 times longer solid retention times (SRTs) as compared to conventional trains. However, the conversion of influent COD to methane was low at 15 to 22%, and neither train exhibited significant nitrification or denitrification. Data were inconclusive as to the role of biosorption in the processes. MCA indicated the presence of Archaea and nitrifiers throughout both systems. However, it is inconclusive as to how active Archaea and nitrifiers are under anoxic, aerobic, and anaerobic conditions. Mathematical modeling confirms the hybrid process produces 4 to 20 times more methane and 20 to 83% less sludge than the conventional train under various operating conditions. Neither process removes more than 25% of the influent nitrogen or converts more that 13% to nitrogen gas due to biomass washout in the contact tank and short SRTs in the stabilization tank. In addition, a mathematical relationship was developed to describe PCOD biosorption through adsorption to biomass and floc entrapment. Ultimately, process performance is more heavily influenced by the higher AD SRTs attained when sludge is recycled through the system and less influenced by the inclusion of biosorption kinetics.
ContributorsYoung, Michelle Nichole (Author) / Rittmann, Bruce E. (Thesis advisor) / Fox, Peter (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2011
152136-Thumbnail Image.png
Description
Reductive dechlorination by members of the bacterial genus Dehalococcoides is a common and cost-effective avenue for in situ bioremediation of sites contaminated with the chlorinated solvents, trichloroethene (TCE) and perchloroethene (PCE). The overarching goal of my research was to address some of the challenges associated with bioremediation timeframes by improving

Reductive dechlorination by members of the bacterial genus Dehalococcoides is a common and cost-effective avenue for in situ bioremediation of sites contaminated with the chlorinated solvents, trichloroethene (TCE) and perchloroethene (PCE). The overarching goal of my research was to address some of the challenges associated with bioremediation timeframes by improving the rates of reductive dechlorination and the growth of Dehalococcoides in mixed communities. Biostimulation of contaminated sites or microcosms with electron donor fails to consistently promote dechlorination of PCE/TCE beyond cis-dichloroethene (cis-DCE), even when the presence of Dehalococcoides is confirmed. Supported by data from microcosm experiments, I showed that the stalling at cis-DCE is due a H2 competition in which components of the soil or sediment serve as electron acceptors for competing microorganisms. However, once competition was minimized by providing selective enrichment techniques, I illustrated how to obtain both fast rates and high-density Dehalococcoides using three distinct enrichment cultures. Having achieved a heightened awareness of the fierce competition for electron donor, I then identified bicarbonate (HCO3-) as a potential H2 sink for reductive dechlorination. HCO3- is the natural buffer in groundwater but also the electron acceptor for hydrogenotrophic methanogens and homoacetogens, two microbial groups commonly encountered with Dehalococcoides. By testing a range of concentrations in batch experiments, I showed that methanogens are favored at low HCO3 and homoacetogens at high HCO3-. The high HCO3- concentrations increased the H2 demand which negatively affected the rates and extent of dechlorination. By applying the gained knowledge on microbial community management, I ran the first successful continuous stirred-tank reactor (CSTR) at a 3-d hydraulic retention time for cultivation of dechlorinating cultures. I demonstrated that using carefully selected conditions in a CSTR, cultivation of Dehalococcoides at short retention times is feasible, resulting in robust cultures capable of fast dechlorination. Lastly, I provide a systematic insight into the effect of high ammonia on communities involved in dechlorination of chloroethenes. This work documents the potential use of landfill leachate as a substrate for dechlorination and an increased tolerance of Dehalococcoides to high ammonia concentrations (2 g L-1 NH4+-N) without loss of the ability to dechlorinate TCE to ethene.
ContributorsDelgado, Anca Georgiana (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Cadillo-Quiroz, Hinsby (Committee member) / Halden, Rolf U. (Committee member) / Rittmann, Bruce E. (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2013
156634-Thumbnail Image.png
Description
Petroleum contamination is ubiquitous during extraction, transportation, refining, and storage. Contamination damages the soil’s ecosystem function, reduces its aesthetics, and poses a potential threat to human beings. The overall goals of this dissertation are to advance understanding of the mechanisms behind ozonation of petroleum-contaminated soil and to configure

Petroleum contamination is ubiquitous during extraction, transportation, refining, and storage. Contamination damages the soil’s ecosystem function, reduces its aesthetics, and poses a potential threat to human beings. The overall goals of this dissertation are to advance understanding of the mechanisms behind ozonation of petroleum-contaminated soil and to configure an effective integrated bioremediation + ozonation remedial strategy to remove the overall organic carbon. Using a soil column, I conducted batch ozonation experiments for different soils and at different moisture levels. I measured multiple parameters: e.g., total petroleum hydrocarbons (TPH) and dissolved organic carbon (DOC), to build a full understanding of the data that led to the solid conclusions. I first demonstrated the feasibility of using ozone to attack heavy petroleum hydrocarbons in soil settings. I identified the physical and chemical hurdles (e.g., moisture, mass transfer, pH) needed to be overcome to make the integration of chemical oxidation and biodegradation more efficient and defines the mechanisms behind the experimental observations. Next, I completed a total carbon balance, which revealed that multiple components, including soil organic matter (SOM) and non-TPH petroleum, competed for ozone, although TPH was relatively more reactive. Further experiments showed that poor soil mixing and high soil-moisture content hindered mass transfer of ozone to react with the TPH. Finally, I pursued the theme of optimizing the integration of ozonation and biodegradation through a multi-stage strategy. I conducted multi-stages of ozonation and bioremediation for two benchmark soils with distinctly different oils to test if and how much ozonation enhanced biodegradation and vice versa. With pH and moisture optimized for each step, pre-ozonation versus post-ozonation was assessed for TPH removal and mineralization. Multi-cycle treatment was able to achieve the TPH regulatory standard when biodegradation alone could not. Ozonation did not directly enhance the biodegradation rate of TPH; instead, ozone converted TPH into DOC that was biodegraded and mineralized. The major take-home lesson from my studies is that multi-stage ozonation + biodegradation is a useful remediation tool for petroleum contamination in soil.
ContributorsChen, Tengfei (Author) / Rittmann, Bruce E. (Thesis advisor) / Westerhoff, Paul (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Delgado, Anca G (Committee member) / Arizona State University (Publisher)
Created2018
152585-Thumbnail Image.png
Description
Uranium (U) contamination has been attracting public concern, and many researchers are investigating principles and applications of U remediation. The overall goal of my research is to understand the versatile roles of sulfate-reducing bacteria (SRB) in uranium bioremediation, including direct involvement (reducing U) and indirect involvement (protecting U reoxidation). I

Uranium (U) contamination has been attracting public concern, and many researchers are investigating principles and applications of U remediation. The overall goal of my research is to understand the versatile roles of sulfate-reducing bacteria (SRB) in uranium bioremediation, including direct involvement (reducing U) and indirect involvement (protecting U reoxidation). I pursue this goal by studying Desulfovibro vuglaris, a representative SRB. For direct involvement, I performed experiments on uranium bioreduction and uraninite (UO2) production in batch tests and in a H2-based membrane biofilm reactor (MBfR) inoculated with D. vuglaris. In summary, D. vuglaris was able to immobilize soluble U(VI) by enzymatically reducing it to insoluble U(IV), and the nanocrystallinte UO2 was associated with the biomass. In the MBfR system, although D. vuglaris failed to form a biofilm, other microbial groups capable of U(VI) reduction formed a biofilm, and up to 95% U removal was achieved during a long-term operation. For the indirect involvement, I studied the production and characterization of and biogenic iron sulfide (FeS) in batch tests. In summary, D. vuglaris produced nanocrystalline FeS, a potential redox buffer to protect UO2 from remobilization by O2. My results demonstrate that a variety of controllable environmental parameters, including pH, free sulfide, and types of Fe sources and electron donors, significantly determined the characteristics of both biogenic solids, and those characteristics should affect U-sequestrating performance by SRB. Overall, my results provide a baseline for exploiting effective and sustainable approaches to U bioremediation, including the application of the novel MBfR technology to U sequestration from groundwater and biogenic FeS for protecting remobilization of sequestrated U, as well as the microbe-relevant tools to optimize U sequestration applicable in reality.
ContributorsZhou, Chen (Author) / Rittmann, Bruce E. (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2014
158340-Thumbnail Image.png
Description
Eighty-two percent of the United States population reside in urban areas. The centralized treatment of the municipal wastewater produced by this population is a huge energy expenditure, up to three percent of the entire energy budget of the country. A portion of this energy is able to be recovered

Eighty-two percent of the United States population reside in urban areas. The centralized treatment of the municipal wastewater produced by this population is a huge energy expenditure, up to three percent of the entire energy budget of the country. A portion of this energy is able to be recovered through the process of anaerobic sludge digestion. Typically, this technology converts the solids separated and generated during the wastewater treatment process into methane, a combustible gas that may be burned to generate electricity. Designing and optimizing anaerobic digestion systems requires the measurement of degradation rates for waste-specific kinetic parameters. In this work, I discuss the ways these kinetic parameters are typically measured. I recommend and demonstrate improvements to these commonly used measuring techniques. I provide experimental results of batch kinetic experiments exploring the effect of sludge pretreatment, a process designed to facilitate rapid breakdown of recalcitrant solids, on energy recovery rates. I explore the use of microbial electrochemical cells, an alternative energy recovery technology able to produce electricity directly from sludge digestion, as precise reporters of degradation kinetics. Finally, I examine a fundamental kinetic limitation of microbial electrochemical cells, acidification of the anode respiring biofilm, to improve their performance as kinetic sensors or energy recovery technologies.
ContributorsHart, Steven Gregg (Author) / Torres, César I (Thesis advisor) / Parameswaran, Prathap (Committee member) / Rittmann, Bruce E. (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2020
158299-Thumbnail Image.png
Description
Seeking to address sustainability issues associated with food waste (FW), and fat, oil, and grease (FOG) waste disposal, the City of Mesa commissioned the Biodesign Swette Center for Environmental Biotechnology (BSCEB) at Arizona State University (ASU) to study to the impact of implementing FW/FOG co-digestion at the wastewater treatment plant

Seeking to address sustainability issues associated with food waste (FW), and fat, oil, and grease (FOG) waste disposal, the City of Mesa commissioned the Biodesign Swette Center for Environmental Biotechnology (BSCEB) at Arizona State University (ASU) to study to the impact of implementing FW/FOG co-digestion at the wastewater treatment plant (WWTP). A key issue for the study was the “souring” of the anaerobic digesters (ADs), which means that the microorganism responsible for organic degradation were deactivated, causing failure of the AD. Several bench-scale reactors soured after the introduction of the FW/FOG feed streams. By comparing measurements from stable with measurements from the souring reactors, I identified two different circumstances responsible for souring events. One set of reactors soured rapidly after the introduction of FW/FOG due to the digester’s hydraulic retention times (HRT) becoming too short for stable operation. A second set of reactors soured after a long period of stability due to steady accumulation of fatty acids (FAs) that depleted bicarbonate alkalinity. FA accumulation was caused by the incomplete hydrolysis/fermentation of feedstock protein, leading to insufficient release of ammonium (NH4+). In contrast, carbohydrates were more rapidly hydrolyzed and fermented to FAs.

The most important contribution of my research is that I identified several leading indicators of souring. In all cases of souring, the accumulation of soluble chemical oxygen demand (SCOD) was an early and easily quantified indicator. A shift in effluent FA concentrations from shorter to longer species also portended souring. A reduction in the yield of methane (CH4) per mass of volatile suspended solids removed (VSSR) also identified souring conditions, but its variability prevented the methane yield from providing advanced warning to allow intervention. For the rapidly soured reactors, reduced bicarbonate alkalinity was the most useful warning sign, and an increasing ratio of SCOD to bicarbonate alkalinity was the clearest sign of souring. Because I buffered the slow-souring reactors with calcium carbonate (CaCO3), I could not rely on bicarbonate alkalinity as an indicator, which put a premium on SCOD as the early warning. I implemented two buffering regimes and demonstrated that early and consistent buffering could lead to reactor recovery.
ContributorsKupferer III, Rick Anthony (Author) / Rittmann, Bruce E. (Thesis advisor) / Young, Michelle N (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2020