Matching Items (7)
Filtering by

Clear all filters

150168-Thumbnail Image.png
Description
Like individual organisms, complex social groups are able to maintain predictable trajectories of growth, from initial colony foundation to mature reproductively capable units. They do so while simultaneously responding flexibly to variation in nutrient availability and intake. Leafcutter ant colonies function as tri-trophic systems, in which the ants harvest vegetation

Like individual organisms, complex social groups are able to maintain predictable trajectories of growth, from initial colony foundation to mature reproductively capable units. They do so while simultaneously responding flexibly to variation in nutrient availability and intake. Leafcutter ant colonies function as tri-trophic systems, in which the ants harvest vegetation to grow a fungus that, in turn, serves as food for the colony. Fungal growth rates and colony worker production are interdependent, regulated by nutritional and behavioral feedbacks. Fungal growth and quality are directly affected by worker foraging decisions, while worker production is, in turn, dependent on the amount and condition of the fungus. In this dissertation, I first characterized the growth relationship between the workers and the fungus of the desert leafcutter ant Acromyrmex versicolor during early stages of colony development, from colony foundation by groups of queens through the beginnings of exponential growth. I found that this relationship undergoes a period of slow growth and instability when workers first emerge, and then becomes allometrically positive. I then evaluated how mass and element ratios of resources collected by the ants are translated into fungus and worker population growth, and refuse, finding that colony digestive efficiency is comparable to digestive efficiencies of other herbivorous insects and ruminants. To test how colonies behaviorally respond to perturbations of the fungus garden, I quantified activity levels and task performance of workers in colonies with either supplemented or diminished fungus gardens, and found that colonies adjusted activity and task allocation in response to the fungus garden size. Finally, to identify possible forms of nutrient limitation, I measured how colony performance was affected by changes in the relative amounts of carbohydrates, protein, and phosphorus available in the resources used to grow the fungus garden. From this experiment, I concluded that colony growth is primarily carbohydrate-limited.
ContributorsClark, Rebecca, 1981- (Author) / Fewell, Jennifer H (Thesis advisor) / Mueller, Ulrich (Committee member) / Liebig, Juergen (Committee member) / Elser, James (Committee member) / Harrison, Jon (Committee member) / Arizona State University (Publisher)
Created2011
150816-Thumbnail Image.png
Description
Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate

Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate to massive crop damage and pest control costs. My dissertation focused on Oedaleus asiaticus, a dominant Asian locust, and had three main objectives. First, I identified morphological, physiological, and behavioral characteristics of the migratory ("brown") and non-migratory ("green") phenotypes. I found that brown morphs had longer wings, larger thoraxes and higher metabolic rates compared to green morphs, suggesting that developmental plasticity allows greater migratory capacity in the brown morph of this locust. Second, I tested the hypothesis of a causal link between livestock overgrazing and an increase in migratory swarms of O. asiaticus. Current paradigms generally assume that increased plant nitrogen (N) should enhance herbivore performance by relieving protein-limitation, increasing herbivorous insect populations. I showed, in contrast to this scenario, that host plant N-enrichment and high protein artificial diets decreased the size and viability of O. asiaticus. Plant N content was lowest and locust abundance highest in heavily livestock-grazed fields where soils were N-depleted, likely due to enhanced erosion and leaching. These results suggest that heavy livestock grazing promotes outbreaks of this locust by reducing plant protein content. Third, I tested for the influence of dietary imbalance, in conjunction with high population density, on migratory plasticity. While high population density has clearly been shown to induce the migratory morph in several locusts, the effect of diet has been unclear. I found that locusts reared at high population density and fed unfertilized plants (i.e. high quality plants for O. asiaticus) had the greatest migratory capacity, and maintained a high percent of brown locusts. These results did not support the hypothesis that poor-quality resources increased expression of migratory phenotypes. This highlights a need to develop new theoretical frameworks for predicting how environmental factors will regulate migratory plasticity in locusts and perhaps other insects.
ContributorsCease, Arianne (Author) / Harrison, Jon (Thesis advisor) / Elser, James (Thesis advisor) / DeNardo, Dale (Committee member) / Quinlan, Michael (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2012
150818-Thumbnail Image.png
Description
While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria

While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria account for the majority of oxygen consumption during aerobic exercise, the primary goal was to investigate differences in isolated muscle mitochondria between these species and to examine to what extent factors intrinsic to mitochondria may account for the behavior observed in the intact tissue and whole organism. First, maximal enzyme activities were assessed in sparrow and rat mitochondria. Citrate synthase and aspartate aminotransferase activity were higher in sparrow compared to rat mitochondria, while glutamate dehydrogenase activity was lower. Sparrow mitochondrial NAD-linked isocitrate dehydrogenase activity was dependent on phosphate, unlike the mammalian enzyme. Next, the rate of oxygen consumption (JO), electron transport chain (ETC) activity, and reactive oxygen species (ROS) production were assessed in intact mitochondria. Maximal rates of fat oxidation were lower than for carbohydrate in rat but not sparrow mitochondria. ETC activity was higher in sparrows, but no differences were found in ROS production between species. Finally, fuel selection and control of respiration at three rates between rest and maximum were assessed. Mitochondrial fuel oxidation and selection mirrored that of the whole body; in rat mitochondria the reliance on carbohydrate increased as the rate of oxygen consumption increased, whereas fat dominated under all conditions in the sparrow. These data indicate fuel selection, at least in part, can be modulated at the level of the mitochondrial matrix when multiple substrates are present at saturating levels. As an increase in matrix oxidation-reduction potential has been linked to a suppression of fat oxidation and high ROS production, the high ETC activity relative to dehydrogenase activity in avian compared to mammalian mitochondria may result in lower matrix oxidation-reduction potential, allowing fatty acid oxidation to proceed while also resulting in low ROS production in vivo.
ContributorsKuzmiak, Sarah (Author) / Willis, Wayne T (Thesis advisor) / Mandarino, Lawrence (Committee member) / Sweazea, Karen (Committee member) / Harrison, Jon (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
168531-Thumbnail Image.png
Description
Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique

Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique opportunities to illuminate drivers of social evolution beyond indirect fitness, especially ecological factors. This dissertation combines behavioral, physiological, and ecological approaches to explore the conditions that favor group formation among non-kin, using as a model the facultatively social carpenter bee, Xylocopa sonorina. Using behavioral and genetic techniques, I found that nestmates in this species are often unrelated, and that non-kin groups form following extensive inter-nest migration.Group living may arise as a strategy to mitigate constraints on available breeding space. To test the hypothesis that nest construction is prohibitively costly for carpenter bees, I measured metabolic rates of excavating bees and used imaging techniques to quantify nest volumes. From these measurements, I found that nest construction is highly energetically costly, and that bees who inherit nests through social queuing experience substantial energetic savings. These costs are exacerbated by limitations on the reuse of existing nests. Using repeated CT scans of nesting logs, I examined changes in nest architecture over time and found that repeatedly inherited tunnels become indefensible to intruders, and are subsequently abandoned. Together, these factors underlie intense competition over available breeding space. The imaging analysis of nesting logs additionally revealed strong seasonal effects on social strategy, with social nesting dominating during winter. To test the hypothesis that winter social nesting arises from intrinsic physiological advantages of grouping, I experimentally manipulated social strategy in overwintering bees. I found that social bees conserve heat and body mass better than solitary bees, suggesting fitness benefits to grouping in cold, resource-scarce conditions. Together, these results suggest that grouping in X. sonorina arises from dynamic strategies to maximize direct fitness in response to harsh and/or competitive conditions. These studies provide empirical insights into the ecological conditions that favor non-kin grouping, and emphasize the importance of ecology in shaping sociality at its evolutionary origins.
ContributorsOstwald, Madeleine (Author) / Fewell, Jennifer H (Thesis advisor) / Amdam, Gro (Committee member) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Kapheim, Karen (Committee member) / Arizona State University (Publisher)
Created2022
190822-Thumbnail Image.png
Description
This research focuses on the intricate dynamical systems of eusocial insects, particularly ants, and honey bees, known for their highly organized colonies and cooperative behaviors. Research on eusocial insects contributes to understanding of animal and social behavior and promises to help agriculture and have huge economic impacts. Collaborating closely with

This research focuses on the intricate dynamical systems of eusocial insects, particularly ants, and honey bees, known for their highly organized colonies and cooperative behaviors. Research on eusocial insects contributes to understanding of animal and social behavior and promises to help agriculture and have huge economic impacts. Collaborating closely with ecologists, I construct diverse mathematical models tailored to different environmental contexts. These models encompass individual stochastic (Agent-based model), Ordinary Differential Equation (ODE), non-autonomous, and Delay Differential Equation (DDE) models, rigorously validated with experimental data and statistical methods. Employing dynamical theory, bifurcation analysis, and numerical simulations, I gain deeper insights into the adaptive behaviors exhibited by these insects at both colony and individual levels. Our investigation addresses pivotal questions: 1) What mechanisms underlie spatial heterogeneity within social insect colonies, influencing the spread of information and pathogens through their intricate social networks?2) How can I develop accurate mathematical models incorporating age structures, particularly for species like honeybees, utilizing delayed differential equations? 3) What is the influence of seasonality on honeybee population dynamics in the presence of parasites, as explored through non-autonomous equations? 4) How do pesticides impact honeybee population dynamics, considering delayed equations and seasonality? Key findings highlight:1) The spatial distribution within colonies significantly shapes contact dynamics, thereby influencing the dissemination of information and the allocation of tasks. 2) Accurate modeling of honeybee populations necessitates the incorporation of age structure, as well as careful consideration of seasonal variations. 3) Seasonal fluctuations in egg-laying rates exert varying effects on the survival of honeybee colonies. 4) Pesticides wield a substantial influence on adult bee mortality rates and the consumption ratios of pollen. This research not only unveils the intricate interplay between intrinsic and environmental factors affecting social insects but also provides broader insights into social behavior and the potential ramifications of climate change.
ContributorsChen, Jun (Author) / Kang, Yun (Thesis advisor) / DeGrandi-Hoffman, Gloria (Committee member) / Fewell, Jeniffer (Committee member) / Harrison, Jon (Committee member) / Towers, Sherry (Committee member) / Arizona State University (Publisher)
Created2023
154237-Thumbnail Image.png
Description
In desert riparian ecosystems, rivers provide free water but access to that water diminishes with distance producing a steep gradient in the relative importance of water for growth and reproduction of riparian animals and hence, their biodiversity. Previous work suggests that water limited riparian predators eat more prey to meet

In desert riparian ecosystems, rivers provide free water but access to that water diminishes with distance producing a steep gradient in the relative importance of water for growth and reproduction of riparian animals and hence, their biodiversity. Previous work suggests that water limited riparian predators eat more prey to meet their water demand where free water is not available. Here I explore the effect of water limitation on prey selection and per capita interaction strengths between a predatory spider ( Hogna antelucana) and two prey species occupying different trophic levels using a controlled field experiment conducted in the riparian forest of the San Pedro River, Cochise County, AZ. Lab measurements of water and energy content revealed that intermediate predators (smaller spiders in the genus Pardosa) had 100-fold higher energy: water ratios than an alternate prey species more basal in the food web (crickets in the genus Gryllus). Given this observation, I hypothesized that water-stressed predatory wolf spiders would select more water-laden crickets but switch to more energy rich Pardosa when water stress was experimentally eliminated. Additionally, I hypothesized that switching by quenched Hogna to Pardosa would reduce predation by Pardosa on Gryllus leading to increased abundance of the basal resource. Finally, I hypothesized that water mediated switching and release of basal prey would be stronger when male Hogna was the apex predator, because female Hogna have higher energetic costs of reproduction and hence, stronger energy limitation. Experimental water additions caused both sexes of Hogna to consume significantly higher numbers of Pardosa but this difference (between water and no-water treatments) did not vary significantly between male and female Hogna treatments. Similarly, strong negative interaction strengths between Hogna and Pardosa led to release of the basal prey species and positive interaction strengths of Hogna on Gryllus. Again strong positive, indirect effects of Hogna on Gryllus did not depend on the sex of the Hogna predator. However, water mediated indirect effects of Hogna (either sex) on Gryllus were the strongest for male Gryllus. These results suggest that water and energy co-dominate foraging decisions by predators and that in managing water-energy balance; predators can modify interaction pathways, sex-ratios of prey populations and trophic dynamics.
ContributorsLeinbach, Israel (Author) / Sabo, John (Thesis advisor) / Harrison, Jon (Committee member) / Johnson, Chadwick (Committee member) / Arizona State University (Publisher)
Created2015
154017-Thumbnail Image.png
Description
Phosphorus (P), an essential nutrient for growth of all organisms, is often in limited biological supply for herbivore consumers compared to other elements, such as carbon (C). Ecological stoichiometry studies have assessed responses of filter-feeding zooplankton from the genus Daphnia to single and multi-species food resources that are P-limited,

Phosphorus (P), an essential nutrient for growth of all organisms, is often in limited biological supply for herbivore consumers compared to other elements, such as carbon (C). Ecological stoichiometry studies have assessed responses of filter-feeding zooplankton from the genus Daphnia to single and multi-species food resources that are P-limited, finding decreased growth as a result to changes in metabolic processes and feeding behavior. Conversely, recent laboratory studies have shown that P-rich algal food resources also result in decreased growth rates for Daphnia, though the possible mechanisms behind this maladaptive response is understudied. Moreover, no published study tests the existence of the “stoichiometric knife edge” hypothesis for low C:P under field conditions. To address this lack of information, I measured growth rate as well as respiration and ingestion rates for D. magna, D. pulicaria, and D. pulex that were fed natural lake seston experimentally enriched with different levels of PO43-. I found heterogeneous effects of high dietary P across Daphnia species. Growth rate responses for D. magna were strong and indicated a negative effect of high-P, most likely as a result to decreased ingestion rates that were observed. The seston treatments did not elicit significant growth rate responses for D. pulex and D. pulicaria, but significant responses to respiration rates were observed for all species. Consumer body stoichiometry, differences in seston C:P for each experiment, or differential assimilation by producer types may be driving these results. My study suggests that the stoichiometric knife edge documented in laboratory studies under low C:P conditions may not operate to the same degree when natural seston is the food source; diet diversity may be driving complex nuances for consumer performance that were previously overlooked.
ContributorsCurrier, Courtney M (Author) / Currier, James (Thesis advisor) / Harrison, Jon (Committee member) / Neuer, Susanne (Committee member) / Arizona State University (Publisher)
Created2015