Matching Items (4)
Filtering by

Clear all filters

149975-Thumbnail Image.png
Description
Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems

Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems of P management. The goal of my research was to increase our understanding of urban P cycling in the context of urban resource management through analysis of existing ecological and socio-economic data supplemented with expert interviews in order to facilitate a transition to sustainable P management. Study objectives were to: I) Quantify and map P stocks and flows in the Phoenix metropolitan area and analyze the drivers of spatial distribution and dynamics of P flows; II) examine changes in P-flow dynamics at the urban agricultural interface (UAI), and the drivers of those changes, between 1978 and 2008; III) compare the UAI's average annual P budget to the global agricultural P budget; and IV) explore opportunities for more sustainable P management in Phoenix. Results showed that Phoenix is a sink for P, and that agriculture played a primary role in the dynamics of P cycling. Internal P dynamics at the UAI shifted over the 30-year study period, with alfalfa replacing cotton as the main locus of agricultural P cycling. Results also suggest that the extent of P recycling in Phoenix is proportionally larger than comparable estimates available at the global scale due to the biophysical characteristics of the region and the proximity of various land uses. Uncertainty remains about the effectiveness of current recycling strategies and about best management strategies for the future because we do not have sufficient data to use as basis for evaluation and decision-making. By working in collaboration with practitioners, researchers can overcome some of these data limitations to develop a deeper understanding of the complexities of P dynamics and the range of options available to sustainably manage P. There is also a need to better connect P management with that of other resources, notably water and other nutrients, in order to sustainably manage cities.
ContributorsMetson, Genevieve (Author) / Childers, Daniel (Thesis advisor) / Aggarwal, Rimjhim (Thesis advisor) / Redman, Charles (Committee member) / Arizona State University (Publisher)
Created2011
131407-Thumbnail Image.png
Description
There are two main sections of this thesis: Codebook development and case coding. Over the course of my two years of involvement with the collaborative governance lab with Drs. Schoon and Carr Kelman, I worked on helping to complete the coding manual built by the lab to test variables from

There are two main sections of this thesis: Codebook development and case coding. Over the course of my two years of involvement with the collaborative governance lab with Drs. Schoon and Carr Kelman, I worked on helping to complete the coding manual built by the lab to test variables from the literature using case studies. My main deliverable was building a Qualtrics survey to collect case studies. Using this Qualtrics survey, the lab will be able to collect coded cases by distributing the survey link through research networks. My thesis project included building the interface for the survey, participating in testing the intercoder reliability of the codebook, and coding one case, the Four Forest Restoration Initiative (4FRI), to provide insight on the collaborative governance strategies of this collaboration. Coding 4FRI also acted as a preliminary test of the survey, helping to provide further information on how users of the codebook might interact with the survey, and allowing the lab to generate a test report of survey results.
ContributorsGoddard, Kevin W (Author) / Carr Kelman, Candice (Thesis director) / Childers, Daniel (Committee member) / School of Sustainability (Contributor, Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132538-Thumbnail Image.png
Description
Constructed treatment wetlands (CTW) are being increasingly utilized in urbanized areas as a cost-effective and environmentally-friendly method for treating wastewater. CTWs can be especially useful for urban areas in aridland environments because they facilitate the reuse of water during water shortages. In my study, I determined the rates

Constructed treatment wetlands (CTW) are being increasingly utilized in urbanized areas as a cost-effective and environmentally-friendly method for treating wastewater. CTWs can be especially useful for urban areas in aridland environments because they facilitate the reuse of water during water shortages. In my study, I determined the rates at which the aboveground and belowground emergent macrophytes sequestered nitrogen in a 42 ha aridland CTW in Phoenix, Arizona, USA. To do so, I measured foliar nitrogen content in aboveground and belowground biomass of three plant species groups (Typha latifolia + Typha domingensis, Schoenoplectus acutus + Schoenoplectus tabernaemontani, and Schoenoplectus californicus). Using these data, I calculated aboveground and belowground nitrogen budgets for the three species groups annually from 2011 to 2018.

Aboveground nitrogen content showed a maximum in 2011, decreasing until 2015, increasing again until 2017, and dropping in 2018; belowground nitrogen content showed the opposite temporal trend. Because foliar nitrogen content was assumed to be relatively constant over time, my data suggested that belowground nitrogen content increased between 2011 and 2015 and decreased between 2015 and 2017. Aboveground nitrogen content underwent fluctuations due to fluctuations in aboveground biomass. This occurred due to ‘thatching’, or events of widespread toppling of large macrophyte stands. The ratio of aboveground to belowground biomass can vary widely in the same CTW. My findings suggested that managing senesced aboveground plant material in CTWs may optimize the CTW’s ability to sequester nitrogen. Further research is needed to determine the best management strategies, as well as its possible implications.
ContributorsCrane, Austin Matthew (Author) / Childers, Daniel (Thesis director) / Sanchez, Christopher (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
153169-Thumbnail Image.png
Description
Climate change will result not only in changes in the mean state of climate but also on changes in variability. However, most studies of the impact of climate change on ecosystems have focused on the effect of changes in the central tendency. The broadest objective of this thesis was to

Climate change will result not only in changes in the mean state of climate but also on changes in variability. However, most studies of the impact of climate change on ecosystems have focused on the effect of changes in the central tendency. The broadest objective of this thesis was to assess the effects of increased interannual precipitation variation on ecosystem functioning in grasslands. In order to address this objective, I used a combination of field experimentation and data synthesis. Precipitation manipulations on the field experiments were carried out using an automated rainfall manipulation system developed as part of this dissertation. Aboveground net primary production responses were monitored during five years. Increased precipitation coefficient of variation decreased primary production regardless of the effect of precipitation amount. Perennial-grass productivity significantly decreased while shrub productivity increased as a result of enhanced precipitation variance. Most interesting is that the effect of precipitation variability increased through time highlighting the existence of temporal lags in ecosystem response.

Further, I investigated the effect of precipitation variation on functional diversity on the same experiment and found a positive response of diversity to increased interannual precipitation variance. Functional evenness showed a similar response resulting from large changes in plant-functional type relative abundance including decreased grass and increased shrub cover while functional richness showed non-significant response. Increased functional diversity ameliorated the direct negative effects of precipitation variation on ecosystem ANPP but did not control ecosystem stability where indirect effects through the dominant plant-functional type determined ecosystem stability.

Analyses of 80 long-term data sets, where I aggregated annual productivity and precipitation data into five-year temporal windows, showed that precipitation variance had a significant effect on aboveground net primary production that is modulated by mean precipitation. Productivity increased with precipitation variation at sites where mean annual precipitation is less than 339 mm but decreased at sites where precipitation is higher than 339 mm. Mechanisms proposed to explain patterns include: differential ANPP response to precipitation among sites, contrasting legacy effects and soil water distribution.

Finally, increased precipitation variance may impact global grasslands affecting plant-functional types in different ways that may lead to state changes, increased erosion and decreased stability that can in turn limit the services provided by these valuable ecosystems.
ContributorsGherardi Arbizu, Laureano (Author) / Sala, Osvaldo E. (Thesis advisor) / Childers, Daniel (Committee member) / Grimm, Nancy (Committee member) / Hall, Sharon (Committee member) / Wu, Jingle (Committee member) / Arizona State University (Publisher)
Created2014