Matching Items (3)
Filtering by

Clear all filters

150069-Thumbnail Image.png
Description
Phase contrast magnetic resonance angiography (PCMRA) is a non-invasive imaging modality that is capable of producing quantitative vascular flow velocity information. The encoding of velocity information can significantly increase the imaging acquisition and reconstruction durations associated with this technique. The purpose of this work is to provide mechanisms for reducing

Phase contrast magnetic resonance angiography (PCMRA) is a non-invasive imaging modality that is capable of producing quantitative vascular flow velocity information. The encoding of velocity information can significantly increase the imaging acquisition and reconstruction durations associated with this technique. The purpose of this work is to provide mechanisms for reducing the scan time of a 3D phase contrast exam, so that hemodynamic velocity data may be acquired robustly and with a high sensitivity. The methods developed in this work focus on the reduction of scan duration and reconstruction computation of a neurovascular PCMRA exam. The reductions in scan duration are made through a combination of advances in imaging and velocity encoding methods. The imaging improvements are explored using rapid 3D imaging techniques such as spiral projection imaging (SPI), Fermat looped orthogonally encoded trajectories (FLORET), stack of spirals and stack of cones trajectories. Scan durations are also shortened through the use and development of a novel parallel imaging technique called Pretty Easy Parallel Imaging (PEPI). Improvements in the computational efficiency of PEPI and in general MRI reconstruction are made in the area of sample density estimation and correction of 3D trajectories. A new method of velocity encoding is demonstrated to provide more efficient signal to noise ratio (SNR) gains than current state of the art methods. The proposed velocity encoding achieves improved SNR through the use of high gradient moments and by resolving phase aliasing through the use measurement geometry and non-linear constraints.
ContributorsZwart, Nicholas R (Author) / Frakes, David H (Thesis advisor) / Pipe, James G (Thesis advisor) / Bennett, Kevin M (Committee member) / Debbins, Josef P (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2011
151433-Thumbnail Image.png
Description
Sensitivity is a fundamental challenge for in vivo molecular magnetic resonance imaging (MRI). Here, I improve the sensitivity of metal nanoparticle contrast agents by strategically incorporating pure and doped metal oxides in the nanoparticle core, forming a soluble, monodisperse, contrast agent with adjustable T2 or T1 relaxivity (r2 or r1).

Sensitivity is a fundamental challenge for in vivo molecular magnetic resonance imaging (MRI). Here, I improve the sensitivity of metal nanoparticle contrast agents by strategically incorporating pure and doped metal oxides in the nanoparticle core, forming a soluble, monodisperse, contrast agent with adjustable T2 or T1 relaxivity (r2 or r1). I first developed a simplified technique to incorporate iron oxides in apoferritin to form "magnetoferritin" for nM-level detection with T2- and T2* weighting. I then explored whether the crystal could be chemically modified to form a particle with high r1. I first adsorbed Mn2+ ions to metal binding sites in the apoferritin pores. The strategic placement of metal ions near sites of water exchange and within the crystal oxide enhance r1, suggesting a mechanism for increasing relaxivity in porous nanoparticle agents. However, the Mn2+ addition was only possible when the particle was simultaneously filled with an iron oxide, resulting in a particle with a high r1 but also a high r2 and making them undetectable with conventional T1-weighting techniques. To solve this problem and decrease the particle r2 for more sensitive detection, I chemically doped the nanoparticles with tungsten to form a disordered W-Fe oxide composite in the apoferritin core. This configuration formed a particle with a r1 of 4,870mM-1s-1 and r2 of 9,076mM-1s-1. These relaxivities allowed the detection of concentrations ranging from 20nM - 400nM in vivo, both passively injected and targeted to the kidney glomerulus. I further developed an MRI acquisition technique to distinguish particles based on r2/r1, and show that three nanoparticles of similar size can be distinguished in vitro and in vivo with MRI. This work forms the basis for a new, highly flexible inorganic approach to design nanoparticle contrast agents for molecular MRI.
ContributorsClavijo Jordan, Maria Veronica (Author) / Bennett, Kevin M (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Sherry, A Dean (Committee member) / Wang, Xiao (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2012
151267-Thumbnail Image.png
Description
The goal of the works presented in this volume is to develop a magnetic resonance imaging (MRI) probe for non-invasive detection of extracellular matrix (ECM) underlying fenestrated endothelia. The ECM is the scaffold that supports tissue structure in all organs. In fenestrated structures the such as the kidney glomerulus and

The goal of the works presented in this volume is to develop a magnetic resonance imaging (MRI) probe for non-invasive detection of extracellular matrix (ECM) underlying fenestrated endothelia. The ECM is the scaffold that supports tissue structure in all organs. In fenestrated structures the such as the kidney glomerulus and the hepatic sinusoid the ECM serves a unique role in blood filtration and is directly exposed to blood plasma. An assessment of the ECM in fenestrated organs such as the kidney and liver reports on the organ's ability to filter blood - a process critical to maintaining homeostasis. Unfortunately, clinical assessment of the ECM in most organs requires biopsy, which is focal and invasive. This work will focus on visualizing the ECM underlying fenestrated endothelia with natural nanoparticles and MRI. The superparamagnetic ferritin protein has been proposed as a useful naturally-derived, MRI-detectable nanoparticle due to its biocompatibility, ease of functionalization, and modifiable metallic core. We will show that cationized ferritin (CF) specifically binds to the anionic proteoglycans of the ECM underlying fenestrated endothelia and that its accumulation is MRI-detectable. We will then demonstrate the use of CF and MRI in identifying and measuring all glomeruli in the kidney. We will also explore the toxicity of intravenously injected CF and consider other avenues for its application, including detection of microstructural changes in the liver due to chronic liver disease. This work will show that CF is useful in detected fenestrated microstructures in small animals and humans alike, indicating that CF may find broad application in detecting and monitoring disease in both preclinical and clinical settings.
ContributorsBeeman, Scott (Author) / Bennett, Kevin M (Thesis advisor) / Kodibagkar, Vikram D (Committee member) / Fayad, Zahi A (Committee member) / Pizziconi, Vincent B (Committee member) / Pipe, James G (Committee member) / Arizona State University (Publisher)
Created2012